Written for intermediate-level undergraduates pursuing any science or engineering major, Philip Nelson’s textbook helps students develop key research competencies not often addressed in traditional courses—modeling, data analysis, programming, and more—all in the context of case studies from living systems.

Features
Students acquire research skills that are not often addressed in traditional courses:

- Basic modeling skills, including dimensional analysis, identification of variables, and ODE formulation
- Probabilistic modeling skills, including stochastic simulation
- Data analysis methods, including maximum likelihood and Bayesian methods
- Computer programming using a general-purpose platform like MATLAB or Python, with short codes written from scratch
- Dynamical systems, particularly feedback control, with phase portrait methods

All of these basic skills, which are relevant to nearly any field of science or engineering, are presented in the context of case studies from living systems, including:

- Virus dynamics
- Bacterial genetics and evolution of drug resistance
- Statistical inference
- Superresolution microscopy
- Synthetic biology
- Naturally evolved cellular circuits, including homeostasis, genetic switches, and the mitotic clock

To purchase at CourseSmart, visit:
www.coursesmart.com/physical-models-of-living-systems/nelson-philip/dp/9781464140297
For other purchasing options, visit:
www.macmillanhighered.com
Table of Contents

I FIRST STEPS
1. Virus Dynamics
 1.1 First Signpost
 1.2 Modeling the course of HIV Infection
 1.3 Just a Few Words about Modeling

2. Physics and Biology
 2.1 Signpost
 2.2 The Intersection
 2.3 Dimensional Analysis

II RANDOMNESS IN BIOLOGY
3. Discrete Randomness
 3.1 Signpost
 3.2 Avatars of Randomness
 3.3 Probability Distribution of a Discrete Random System
 3.4 Conditional Probability
 3.5 Expectations and Moments

4. Some Useful Discrete Distributions
 4.1 Signpost
 4.2 Binomial Distribution
 4.3 Poisson Distribution
 4.4 The Jackpot Distribution and Bacterial Genetics

5. Continuous Distributions
 5.1 Signpost
 5.2 Probability density function
 5.3 More about the Gaussian distribution
 5.4 More on long-tail distributions

6. Model Selection and Parameter Estimation
 6.1 Signpost
 6.2 Maximum Likelihood
 6.3 Parameter Estimation
 6.4 Biological Applications
 6.5 An Extension of Maximum Likelihood Lets Us Infer Functional Relationships from Data

9. Poisson Processes
 9.1 Signpost
 9.2 The Kinetics of a Single-molecule Machine
 9.3 Random Processes
 9.4 More Examples
 9.5 Convolution and Multi-step Processes
 9.6 Computer Simulation

11. Cellular Oscillators
 11.1 Signpost
 11.2 Some Single Cells have Diurnal or Mitotic Clocks
 11.3 Synthetic Oscillators in Cells
 11.4 Mechanical Clocks and Related Devices can also be Represented by their Phase Portraits
 11.5 Natural Oscillators

III CONTROL IN CELLS
8. Randomness in Cellular Processes
 8.1 Signpost
 8.2 Random Walks and Beyond
 8.3 Molecular Population Dynamics as a Markov Process
 8.4 Gene Expression

9. Negative Feedback Control
 9.1 Signpost
 9.2 Mechanical Feedback and Phase Portraits
 9.3 Wetware Available in Cells
 9.4 Dynamics of Molecular Inventories
 9.5 Synthetic Biology
 9.6 A Natural Example: The trp Operon
 9.7 Some Systems Overshoot on their Way to their Stable Fixed Point

10. Genetic Switches in Cells
 10.1 Signpost
 10.2 Bacteria Have Behavior
 10.3 Positive Feedback Can Lead to Bistability
 10.4 A Synthetic Toggle Switch Network in E. coli
 10.5 Natural Examples of Switches

EPILOGUE

APPENDIX A GLOBAL LIST OF SYMBOLS
A.1 Mathematical Notation
A.2 Graphical Notation
A.3 Named Quantities

APPENDIX B UNITS AND DIMENSIONAL ANALYSIS
B.1 Base Units
B.2 Dimensions versus Units
B.3 Dimensionless Quantities
B.4 About Graphs
B.5 About Angles
B.6 Payoff

APPENDIX C NUMERICAL VALUES
C.1 Fundamental Constants

macmillanhighered.com