Supplementary Topics for Quantitative Chemical Analysis gth ed.

Daniel C. Harris

Spreadsheet for Precipitation Titration of a Mixture 2
Microequilibrium Constants 8
Spreadsheets for Redox Titration Curves 13
HPLC Chromatography Simulator 38
Fourier Transform of Infrared Spectrum with a Spreadsheet 45

Spreadsheet for Precipitation Titration of a Mixture

We now derive an equation for the shape of the titration curve for a mixture (initial volume $=\mathrm{V}^{0}$) of the anions $\mathrm{X}^{-}\left(\right.$initial concentration $\left.=\mathrm{C}_{\mathrm{X}}^{0}\right)$ and $\mathrm{Y}^{-}\left(\right.$initial concentration $\left.=\mathrm{C}_{\mathrm{Y}}^{0}\right)$ titrated with M^{+}(initial concentration $=\mathrm{C}_{\mathrm{M}}^{0}$, volume added $=\mathrm{V}_{\mathrm{M}}$) to precipitate $\mathrm{MX}(\mathrm{s})$ and $\mathrm{MY}(\mathrm{s})$, whose solubility products are $\mathrm{K}_{\mathrm{sp}}^{\mathrm{X}}$ and $\mathrm{K}_{\mathrm{sp}}^{\mathrm{Y}}$. The three mass balances are

Mass balance for $\mathrm{M}: \quad \mathrm{C}_{\mathrm{M}}^{0} \cdot \mathrm{~V}_{\mathrm{M}}=\left[\mathrm{M}^{+}\right]\left(\mathrm{V}_{\mathrm{M}}+\mathrm{V}^{\mathrm{o}}\right)+\operatorname{mol~MX}(\mathrm{s})+\operatorname{mol~MY}(\mathrm{s})$
Mass balance for $\mathrm{X}: \quad \mathrm{C}_{\mathrm{X}}^{0} \cdot \mathrm{~V}^{o}=\left[\mathrm{X}^{-}\right]\left(\mathrm{V}_{\mathrm{M}}+\mathrm{V}^{0}\right)+\operatorname{mol~MX}(\mathrm{s})$
Mass balance for $\mathrm{Y}: \quad \mathrm{C}_{\mathrm{Y}}^{0} \cdot \mathrm{~V}^{\mathrm{o}}=\left[\mathrm{Y}^{-}\right]\left(\mathrm{V}_{\mathrm{M}}+\mathrm{V}^{0}\right)+\operatorname{mol~MY(s)}$
Equation 2 can be solved for mol MX(s), and Equation 3 can be solved for mol MY(s). When these two expressions are substituted into Equation 1, we can solve for V_{M} to find
Precipitation of $X^{-}+\mathrm{Y}^{-}$with $M^{+}: \quad \mathrm{V}_{\mathrm{M}}=\mathrm{Vo}^{0}\left(\frac{\mathrm{C}_{\mathrm{X}}^{\mathrm{O}}+\mathrm{C}_{\mathrm{Y}}^{\mathrm{o}}+\left[\mathrm{M}^{+}\right]-\left[\mathrm{X}^{-}\right]-\left[\mathrm{Y}^{-}\right]}{\mathrm{C}_{\mathrm{M}}^{\mathrm{o}}-\left[\mathrm{M}^{+}\right]+\left[\mathrm{X}^{-}\right]+\left[\mathrm{Y}^{-}\right]}\right)$

The IF Statement

Equation 4 allows us to compute the titration curve for a mixture, but we must be aware of some tricky subtleties. For the first part of the titration of a mixture of I^{-}and Cl^{-}, only I^{-}is precipitating. In this region, we can say $\left[\mathrm{I}^{-}\right]=\mathrm{K}_{\mathrm{sp}}^{\mathrm{AgI}} /\left[\mathrm{Ag}^{+}\right] . \quad\left[\mathrm{Cl}^{-}\right]$is just the initial concentration corrected for dilution ($\left[\mathrm{Cl}^{-}\right]=\mathrm{C}_{\mathrm{Cl}}^{0} \cdot\left\{\mathrm{~V}^{\mathrm{o}} /\left(\mathrm{V}_{\mathrm{M}}+\mathrm{V}^{\mathrm{O}}\right)\right\}$), because precipitation of AgCl has not commenced. This is the value computed in column D of the spreadsheet in Figure 1. Precipitation of Cl^{-}begins shortly before the first equivalence point when the product $\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]$exceeds $\mathrm{K}_{\mathrm{sp}}^{\mathrm{AgCl}}$.
[Cl^{-}] in Equation 4 must therefore be computed with an IF statement:

$$
\begin{aligned}
& \text { IF }\left[\mathrm{Ag}^{+}\right]<\mathrm{K}_{\mathrm{sp}}^{\mathrm{AgCl}} /\left[\mathrm{Cl}^{-}\right] \\
& \text {then }\left[\mathrm{Cl}^{-}\right]=\mathrm{C}_{\mathrm{Cl}}^{\mathrm{O}} \cdot\left\{\mathrm{Vo}^{0} /\left(\mathrm{V}_{\mathrm{M}}+\mathrm{V}^{\mathrm{o}}\right)\right\} \\
& \text { otherwise }\left[\mathrm{Cl}^{-}\right]=\mathrm{K}_{\mathrm{sp}}^{\mathrm{AgCl}} /\left[\mathrm{Ag}^{+}\right]
\end{aligned}
$$

A common syntax for testing a logical condition is
IF(logic_statement, value_if_true, value_if_false)
This expression means that if logic_statement is true, value_if_true is returned. Otherwise,

	A	B	C	D	E	F	G
1	Titration of $\mathrm{I}^{-}+\mathrm{Cl}^{-}$by Ag^{+}						
2				[Cl^{-}]			
3	$\mathrm{K}_{\text {sp }}(\mathrm{AgCl})=$	pAg	[Ag^{+}]	Diluted value	[Cl^{-}]	[${ }^{\text {] }}$	V_{M}
4	$1.80 \mathrm{E}-10$	14.5	$3.16 \mathrm{E}-15$	0.0411	$4.11 \mathrm{E}-02$	$2.62 \mathrm{E}-02$	8.651
5	$\mathrm{K}_{\text {sp }}(\mathrm{AgI})=$	14	$1.00 \mathrm{E}-14$	0.0344	$3.44 \mathrm{E}-02$	$8.30 \mathrm{E}-03$	18.060
6	$8.30 \mathrm{E}-17$	13	$1.00 \mathrm{E}-13$	0.0317	3.17E-02	$8.30 \mathrm{E}-04$	23.143
7	$\mathrm{V}^{0}=$	12	$1.00 \mathrm{E}-12$	0.0314	$3.14 \mathrm{E}-02$	$8.30 \mathrm{E}-05$	23.701
8	40	11	$1.00 \mathrm{E}-11$	0.0314	$3.14 \mathrm{E}-02$	$8.30 \mathrm{E}-06$	23.757
9	$\mathrm{C}^{0}(\mathrm{Cl})=$	10	$1.00 \mathrm{E}-10$	0.0314	$3.14 \mathrm{E}-02$	$8.30 \mathrm{E}-07$	23.763
10	0.05	9	$1.00 \mathrm{E}-09$	0.0314	$3.14 \mathrm{E}-02$	$8.30 \mathrm{E}-08$	23.763
11	$\mathrm{C}^{0}(\mathrm{I})=$	8	$1.00 \mathrm{E}-08$	0.0277	$1.80 \mathrm{E}-02$	$8.30 \mathrm{E}-09$	32.078
12	0.0502	7	$1.00 \mathrm{E}-07$	0.0234	$1.80 \mathrm{E}-03$	$8.30 \mathrm{E}-10$	45.608
13	$\mathrm{C}^{0}(\mathrm{Ag})=$	6	$1.00 \mathrm{E}-06$	0.0229	$1.80 \mathrm{E}-04$	$8.30 \mathrm{E}-11$	47.247
14	0.0845	5	$1.00 \mathrm{E}-05$	0.0229	$1.80 \mathrm{E}-05$	$8.30 \mathrm{E}-12$	47.424
15		4	$1.00 \mathrm{E}-04$	0.0228	$1.80 \mathrm{E}-06$	$8.30 \mathrm{E}-13$	47.534
16		3	$1.00 \mathrm{E}-03$	0.0226	$1.80 \mathrm{E}-07$	$8.30 \mathrm{E}-14$	48.479
17		2	$1.00 \mathrm{E}-02$	0.0202	$1.80 \mathrm{E}-08$	$8.30 \mathrm{E}-15$	59.168
18							
19	$\mathrm{C} 4=10^{\wedge}-\mathrm{B4}$						
20	D4 = \$A\$10*(\$A\$8/ (\$A\$8+G4))						
21	$\mathrm{E} 4=\mathrm{IF}((\mathrm{D} 4<(\$ \mathrm{~A} 4 / \mathrm{C} 4)), \mathrm{D} 4, \$ \mathrm{~A} 4 / \mathrm{C} 4)$						
22	F4 = \$A\$6/C4						
23	$\mathrm{G4}=$ \$A\$8*(\$A\$10+\$A\$12+C4-E4-F4)/(\$A\$14-C4+E4+F4)						

Figure 1. Spreadsheet for titration of a mixture
value_if_false is returned. For example, $\operatorname{IF}(\mathrm{C} 2>\$ \mathrm{~A} \$ 6,0.05,0)$ returns a value of 0.05 if $\mathrm{C} 2>\$ \mathrm{~A} \$ 6$ and a value of 0 if $\mathrm{C} 2 \leq \$ \mathrm{~A} \$ 6$. For the titration of I^{-}and $\mathrm{Cl}^{-},\left[\mathrm{Cl}^{-}\right]$in cell E 4 in the spreadsheet in Figure 1 is calculated with the statement

$$
\begin{aligned}
& \text { IF }\left(\left[\mathrm{Cl}^{-}\right]_{\text {diluted }}<\mathrm{K}_{\mathrm{sp}}^{\mathrm{AgCl}} /\left[\mathrm{Ag}^{+}\right],\left[\mathrm{Cl}^{-}\right]_{\text {diluted }}, \mathrm{K}_{\mathrm{sp}}^{\mathrm{AgCl}} /\left[\mathrm{Ag}^{+}\right]\right) \\
& \text {If }((\mathrm{D} 4<(\$ \mathrm{~A} \$ 4 / \mathrm{C} 4)), \mathrm{D} 4, \$ \mathrm{~A} \$ 4 / \mathrm{C} 4)
\end{aligned}
$$

In column D of the spreadsheet in Figure 1 we calculate the concentration of Cl^{-} from dilution of the initial volume V^{o} to the final volume $\mathrm{V}_{\mathrm{M}}+\mathrm{V}^{0}$. In column E we calculate the concentration of Cl^{-}with the IF statement that checks to see whether or not AgCl has precipitated.

There is a very significant subtlety in the spreadsheet in Figure 1. Column D requires the value in column G. But column G requires the value in column E , which uses the value in column D. This is called a circular definition. Most spreadsheets allow you
to do this and may question you to see if it is really what you meant to do.
To prepare Excel 2007 for circular definitions, click the Microsoft Office button at the upper left of the spreadsheet. Click on Excel Options at the bottom of the window. Select Formulas. In Calculation Options, check Enable iterative calculation. You might need to set Maximum Change to a small number (such as 10^{-16}), if necessary to compute small numbers. Click OK and Excel will handle the circular definitions in your spreadsheet. For circular definitions in earlier versions of Excel, select OPTIONS in the TOOLS menu. Select the Calculation tab. In the window that appears, select Automatic and Iteration and click OK.

Exercises

A. Derive Equation 4.
B. Prepare a graph with Equation 4 for the titration of 50.00 mL of $0.05000 \mathrm{M} \mathrm{Br}^{-}+$ $0.05000 \mathrm{M} \mathrm{Cl}^{-}$with $0.1000 \mathrm{M} \mathrm{Ag}^{+}$. Use your spreadsheet to find the fraction of each anion precipitated at the first equivalence point. (Answer: 99.723% of Br^{-} and 0.277% of Cl^{-}are precipitated.)
C. Derive an expression analogous to Equation 4 for titration of a mixture of three anions. Compute the shape of the titration curve for 50.00 mL of $0.05000 \mathrm{M} \mathrm{I}^{-}+$ $0.05000 \mathrm{M} \mathrm{Br}^{-}+0.05000 \mathrm{M} \mathrm{Cl}^{-}$with $0.1000 \mathrm{M} \mathrm{Ag}^{+}$.

Solutions to Exercises

A. From Equation 2, $\operatorname{mol~MX}(\mathrm{s})=\mathrm{C}_{\mathrm{X}}^{\mathrm{o}} \mathrm{V}^{\mathrm{o}}-\left[\mathrm{X}^{-}\right]\left(\mathrm{V}_{\mathrm{M}}+\mathrm{V}^{\mathrm{o}}\right)$

From Equation 3, mol MY(s) $=\mathrm{C}_{\mathrm{Y}}^{\mathrm{o}} \mathrm{V}^{\mathrm{o}}-\left[\mathrm{Y}^{-}\right]\left(\mathrm{V}_{\mathrm{M}}+\mathrm{V}^{\mathrm{o}}\right)$
Substituting these into Equation 1 gives
$\mathrm{C}_{\mathrm{M}}^{\mathrm{O}} \mathrm{V}_{\mathrm{M}}=\left[\mathrm{M}^{+}\right]\left(\mathrm{V}_{\mathrm{M}}+\mathrm{V}^{\mathrm{o}}\right)+\mathrm{C}_{\mathrm{X}}^{\mathrm{O}} \mathrm{V}^{\mathrm{o}}-\left[\mathrm{X}^{-}\right]\left(\mathrm{V}_{\mathrm{M}}+\mathrm{V}^{\mathrm{o}}\right)+\mathrm{C}_{\mathrm{Y}}^{\mathrm{o}} \mathrm{V}^{\mathrm{o}}-\left[\mathrm{Y}^{-}\right]\left(\mathrm{V}_{\mathrm{M}}+\mathrm{V}^{\mathrm{o}}\right)$
$\mathrm{V}_{\mathrm{M}}\left(\mathrm{C}_{\mathrm{M}}^{\mathrm{O}}-\left[\mathrm{M}^{+}\right]+\left[\mathrm{X}^{-}\right]+\left[\mathrm{Y}^{-}\right]\right)=\mathrm{V}^{\mathrm{O}}\left(\left[\mathrm{M}^{+}\right]+\mathrm{C}_{\mathrm{X}}^{\mathrm{O}}-\left[\mathrm{X}^{-}\right]+\mathrm{C}_{\mathrm{Y}}^{\mathrm{O}}-\left[\mathrm{Y}^{-}\right]\right)$
which can be rearranged to give Equation 4.
B. Titration of 50.00 mL of $0.05000 \mathrm{M} \mathrm{Br}^{-}+0.05000 \mathrm{M} \mathrm{Cl}^{-}$with $0.1000 \mathrm{M} \mathrm{Ag}^{+}$

	A	B	C	D	E	F	G
1	$\mathrm{K}_{\text {sp }}(\mathrm{AgCl})=$	pAg	[Ag^{+}]	$\mathrm{Cl}($ Diluted)	[Cl$]$	$\left.{ }^{[8 r}{ }^{-}\right]$	V^{M}
2	$1.8 \mathrm{E}-10$	11	$1.00 \mathrm{E}-11$	$5.00 \mathrm{E}-02$	$5.00 \mathrm{E}-02$	5.00E-02	0.000
3	$\mathrm{K}_{\text {sp }}(\mathrm{AgBr})=$	10	$1.00 \mathrm{E}-10$	$3.50 \mathrm{E}-02$	$3.50 \mathrm{E}-02$	$5.00 \mathrm{E}-03$	21.429
4	5E-13	9	$1.00 \mathrm{E}-09$	$3.35 \mathrm{E}-02$	$3.35 \mathrm{E}-02$	$5.00 \mathrm{E}-04$	24.627
5	$\mathrm{V}^{0}=$	8	$1.00 \mathrm{E}-08$	$2.95 \mathrm{E}-02$	$1.80 \mathrm{E}-02$	$5.00 \mathrm{E}-05$	34.710
6	50	7	$1.00 \mathrm{E}-07$	$2.55 \mathrm{E}-02$	$1.80 \mathrm{E}-03$	$5.00 \mathrm{E}-06$	48.227
7	$\mathrm{C}^{0}(\mathrm{Cl})=$	5	$1.00 \mathrm{E}-05$	$2.50 \mathrm{E}-02$	$1.80 \mathrm{E}-05$	$5.00 \mathrm{E}-08$	49.992
8	0.05	4	$1.00 \mathrm{E}-04$	$2.50 \mathrm{E}-02$	1.80E-06	$5.00 \mathrm{E}-09$	50.098
9	$\mathrm{C}^{0}(\mathrm{Br})=$	3	$1.00 \mathrm{E}-03$	$2.48 \mathrm{E}-02$	$1.80 \mathrm{E}-07$	$5.00 \mathrm{E}-10$	51.010
10	0.05	2	$1.00 \mathrm{E}-02$	$2.25 \mathrm{E}-02$	$1.80 \mathrm{E}-08$	$5.00 \mathrm{E}-11$	61.111
11	$\mathrm{C}^{0}(\mathrm{Ag})=$						
12	0.1	Concentrations at first equivalence point:					
13		(Display more digits to answer question in problem)					
14		8.266402	$5.41 \mathrm{E}-09$	$3.333 \mathrm{E}-02$	$3.324 \mathrm{E}-02$	$9.234 \mathrm{E}-05$	25.000
15							
16	$\mathrm{C} 2=10^{\wedge}-\mathrm{B} 2$						
17	D2 = \$A\$8*(\$A\$6/(\$A\$6+G2))						
18	$\mathrm{E} 2=\mathrm{If}((\mathrm{D} 2<(\$ \mathrm{~A} 2 / \mathrm{C} 2)), \mathrm{D} 2, \$ \mathrm{~A}$ 2/C2)						
19	F2 = \$A\$4/C2						
20	G2 = \$A\$6*(\$A\$8+\$A\$10+C2-E2-F2)/(\$A\$12-C2+E2+F2)						

C. For anions $\mathrm{X}^{-}, \mathrm{Y}^{-}$and Z^{-}, the titration equation is

$$
\mathrm{V}_{\mathrm{M}}=\mathrm{Vo}^{\mathrm{o}}\left(\frac{\mathrm{C}_{\mathrm{X}}^{0}+\mathrm{C}_{\mathrm{Y}}^{0}+\mathrm{C}_{\mathrm{Z}}^{0}+\left[\mathrm{M}^{+}\right]-\left[\mathrm{X}^{-}\right]-\left[\mathrm{Y}^{-}\right]-\left[\mathrm{Z}^{-}\right]}{\mathrm{C}_{\mathrm{M}}^{\mathrm{o}}-\left[\mathrm{M}^{+}\right]+\left[\mathrm{X}^{-}\right]+\left[\mathrm{Y}^{-}\right]+\left[\mathrm{Z}^{-}\right]}\right)
$$

Spreadsheet for titration of anions $\mathrm{X}^{-}, \mathrm{Y}^{-}$and Z^{-}by Ag^{+}

	A	B	C	D	E	F	G	H	I
1	$\mathrm{K}_{\text {sp }}(\mathrm{AgCl})$	pAg	$\left[\mathrm{Ag}^{+}\right]$	[Cl^{-}]	$\left[\mathrm{Cl}^{-}\right]$	[Br^{-}]	[Br°]	[${ }^{+}$]	V^{M}
2	$1.8 \mathrm{E}-10$			(Diluted)		(Diluted)			
3	$\mathrm{K}_{\text {sp }}(\mathrm{AgBr})$	14.77	$1.70 \mathrm{E}-15$	$4.96 \mathrm{E}-02$	$4.96 \mathrm{E}-02$	$4.96 \mathrm{E}-02$	$4.96 \mathrm{E}-02$	$4.89 \mathrm{E}-02$	0.38
4	5E-13	14	$1.00 \mathrm{E}-14$	$3.61 \mathrm{E}-02$	3.61E-02	$3.61 \mathrm{E}-02$	$3.61 \mathrm{E}-02$	$8.30 \mathrm{E}-03$	19.25
5	$\mathrm{K}_{\text {sp }}(\mathrm{AgI})$	13	$1.00 \mathrm{E}-13$	$3.36 \mathrm{E}-02$	$3.36 \mathrm{E}-02$	$3.36 \mathrm{E}-02$	$3.36 \mathrm{E}-02$	$8.30 \mathrm{E}-04$	24.38
6	8.3E-17	12	$1.00 \mathrm{E}-12$	$3.34 \mathrm{E}-02$	$3.34 \mathrm{E}-02$	$3.34 \mathrm{E}-02$	$3.34 \mathrm{E}-02$	$8.30 \mathrm{E}-05$	24.94
7	$\mathrm{V}^{0}=$	11	$1.00 \mathrm{E}-11$	3.33E-02	$3.33 \mathrm{E}-02$	$3.33 \mathrm{E}-02$	$3.33 \mathrm{E}-02$	8.30E-06	24.99
8	50	10	$1.00 \mathrm{E}-10$	$2.63 \mathrm{E}-02$	$2.63 \mathrm{E}-02$	$2.63 \mathrm{E}-02$	$5.00 \mathrm{E}-03$	$8.30 \mathrm{E}-07$	45.24
9	$\mathrm{C}^{0}(\mathrm{Cl})=$	9	$1.00 \mathrm{E}-09$	$2.51 \mathrm{E}-02$	$2.51 \mathrm{E}-02$	$2.51 \mathrm{E}-02$	$5.00 \mathrm{E}-04$	$8.30 \mathrm{E}-08$	49.50
10	0.05	8	$1.00 \mathrm{E}-08$	$2.36 \mathrm{E}-02$	$1.80 \mathrm{E}-02$	$2.36 \mathrm{E}-02$	$5.00 \mathrm{E}-05$	$8.30 \mathrm{E}-09$	55.89
11	$\mathrm{C}^{0}(\mathrm{Br})=$	7	$1.00 \mathrm{E}-07$	$2.04 \mathrm{E}-02$	$1.80 \mathrm{E}-03$	$2.04 \mathrm{E}-02$	$5.00 \mathrm{E}-06$	$8.30 \mathrm{E}-10$	72.78
12	0.05	6	$1.00 \mathrm{E}-06$	$2.00 \mathrm{E}-02$	$1.80 \mathrm{E}-04$	$2.00 \mathrm{E}-02$	$5.00 \mathrm{E}-07$	$8.30 \mathrm{E}-11$	74.78
13	$\mathrm{C}^{0}(\mathrm{I})=$	5	$1.00 \mathrm{E}-05$	$2.00 \mathrm{E}-02$	$1.80 \mathrm{E}-05$	$2.00 \mathrm{E}-02$	$5.00 \mathrm{E}-08$	$8.30 \mathrm{E}-12$	74.99
14	0.05	4	$1.00 \mathrm{E}-04$	$2.00 \mathrm{E}-02$	$1.80 \mathrm{E}-06$	$2.00 \mathrm{E}-02$	$5.00 \mathrm{E}-09$	$8.30 \mathrm{E}-13$	75.12
15	$C^{0}(A g)=$	3	$1.00 \mathrm{E}-03$	$1.98 \mathrm{E}-02$	$1.80 \mathrm{E}-07$	$1.98 \mathrm{E}-02$	$5.00 \mathrm{E}-10$	$8.30 \mathrm{E}-14$	76.26
16	0.1	2	$1.00 \mathrm{E}-02$	$1.80 \mathrm{E}-02$	$1.80 \mathrm{E}-08$	$1.80 \mathrm{E}-02$	$5.00 \mathrm{E}-11$	$8.30 \mathrm{E}-15$	88.89
17									
18	$\mathrm{C} 3=10^{\wedge}-\mathrm{B} 3$					F3 = \$A\$12* ${ }^{\text {d }}$ A\$8/(\$A\$8+I3)			
19	D3 $=$ \$A\$10*(\$A\$8/ (\$A\$8+I3))					G3 = If ((F3<(\$A\$4/ C3)),F3,\$A\$4/ C3)			
20	E3 = If((D3<(\$A\$2/C3)), D3,\$A\$2/C3)					H3 = \$A\$6/C3			
21	$13=\$ A \$ 8 *(\$ A \$ 10+\$ A \$ 12+\$ A \$ 14+C 3-E 3-G 3-H 3) /(\$ A \$ 16-C 3+E 3+G 3+H 3)$								

Microequilibrium Constants

When two or more sites in a molecule have similar acid dissociation constants, there is an equilibrium of protons among those sites. Consider the molecule 2,3-diphosphoglycerate, which regulates the ability of your hemoglobin to bind O_{2} in red blood cells. 2,3-Diphosphoglycerate reduces the affinity of hemoglobin for O_{2}. One method by which humans adapt to high altitudes is to decrease the concentration of 2,3-diphosphoglycerate in the blood and thereby increase the affinity of hemoglobin for the scarce O_{2} in the air.

The species designated $\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{A}^{3-}$ at the left below is a diprotic acid that can lose a proton from phosphate at site a or site b .

A microequilibrium constant describes the reaction of a chemically distinct site in a molecule. Each site has a unique constant associated with it.

Loss of H_{a} from $\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{A}^{3-}: \quad \mathrm{k}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{\mathrm{b}} \mathrm{A}^{4-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{A}^{3-}\right]}=2.9 \times 10^{-7}$

Loss of H_{b} from $\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{A}^{3-}$:

$$
\mathrm{k}_{\mathrm{b}}=\frac{\left[\mathrm{H}_{\mathrm{a}} \mathrm{~A}^{4-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{~A}^{3-}\right]}=1.5 \times 10^{-7}
$$

Loss of H_{b} from $\mathrm{H}_{\mathrm{b}} \mathrm{A}^{4-}: \quad \mathrm{k}_{\mathrm{ab}}=\frac{\left[\mathrm{A}^{5-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{\mathrm{b}} \mathrm{A}^{4-}\right]}=7.5 \times 10^{-8}$

Loss of H_{a} from $\mathrm{H}_{\mathrm{a}} \mathrm{A}^{4-}$:

$$
\mathrm{k}_{\mathrm{ba}}=\frac{\left[\mathrm{A}^{5-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{\mathrm{a}} \mathrm{~A}^{4-}\right]}=1.5 \times 10^{-7}
$$

By contrast, ordinary equilibrium constants describe the gain or loss of protons without regard to which sites in the molecule participate in the chemistry. The microequilibrium constants are related to the conventional equilibrium constants as follows:

$$
\begin{gather*}
\mathrm{K}_{1}=\frac{\left(\left[\mathrm{H}_{\mathrm{a}} \mathrm{~A}^{4-}\right]+\left[\mathrm{H}_{\mathrm{b}} \mathrm{~A}^{4-}\right]\right)\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{~A}^{3-}\right]}=\mathrm{k}_{\mathrm{a}}+\mathrm{k}_{\mathrm{b}} \tag{1}\\
\mathrm{~K}_{2}=\frac{\left[\mathrm{A}^{5-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{\mathrm{a}} \mathrm{~A}^{4-}\right]+\left[\mathrm{H}_{\mathrm{b}} \mathrm{~A}^{4-}\right]}=\frac{\mathrm{k}_{\mathrm{ab}} \mathrm{k}_{\mathrm{ba}}}{\mathrm{k}_{\mathrm{ab}}+\mathrm{k}_{\mathrm{ba}}} \tag{2}
\end{gather*}
$$

Microequilibrium constants can be measured by nuclear magnetic resonance spectroscopy, in which the spectroscopic signals for molecules protonated at site a can be distinguished from those protonated at site $\mathrm{b} .^{\dagger}$ The results of one such experiment are displayed in Figure 1, in which $\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{A}^{3-}$ was titrated with OH^{-}. Protons from both sites are lost simultaneously, but because k_{a} is about twice as great at k_{b}, there is always a greater concentration of $\mathrm{H}_{\mathrm{b}} \mathrm{A}^{4-}$ than of $\mathrm{H}_{\mathrm{a}} \mathrm{A}^{4-}$ throughout the reaction.

[^0]

Figure 1. Fractional composition diagram for treatment of 2,3-diphosphoglycerate with base. Equilibrium among the species is described by microequilibrium constants. [From California State Science Fair project of Douglas Harris, 1992.]

Exercises

A. Derive Equations 1 and 2. Also, show that $k_{a} k_{a b}=k_{b} k_{b a}$. That is, there are only three independent microequilibrium constants. If you know three of them, you can calculate the fourth one.
B. Consider the diprotic acid $\mathrm{H}_{2} \mathrm{~A}$, with two chemically distinguishable sites of protonation. We define the fraction of protonation at sites a and b as follows:
Fraction of protonation at site $a=f_{a}=\frac{\left[\mathrm{H}_{2} \mathrm{~A}\right]+\left[\mathrm{H}_{\mathrm{a}} \mathrm{A}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]+\left[\mathrm{H}_{\mathrm{a}} \mathrm{A}^{-}\right]+\left[\mathrm{H}_{\mathrm{b}} \mathrm{A}^{-}\right]+\left[\mathrm{A}^{2-}\right]}$
Fraction of protonation at site $a=f_{b}=\frac{\left[\mathrm{H}_{2} \mathrm{~A}\right]+\left[\mathrm{H}_{\mathrm{b}} \mathrm{A}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]+\left[\mathrm{H}_{\mathrm{a}} \mathrm{A}^{-}\right]+\left[\mathrm{H}_{\mathrm{b}} \mathrm{A}^{-}\right]+\left[\mathrm{A}^{2-}\right]}$
Show that

$$
\begin{aligned}
\mathrm{f}_{\mathrm{a}} & =\frac{\left[\mathrm{H}^{+}\right]^{2}+\mathrm{k}_{\mathrm{b}}\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]^{2}+\mathrm{k}_{\mathrm{b}}\left[\mathrm{H}^{+}\right]+\mathrm{k}_{\mathrm{a}}\left[\mathrm{H}^{+}\right]+\mathrm{k}_{\mathrm{ba}} \mathrm{k}_{\mathrm{b}}} \\
\mathrm{f}_{\mathrm{b}} & =\frac{\left[\mathrm{H}^{+}\right]^{2}+\mathrm{k}_{\mathrm{a}}\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}^{+}\right]^{2}+\mathrm{k}_{\mathrm{b}}\left[\mathrm{H}^{+}\right]+\mathrm{k}_{\mathrm{a}}\left[\mathrm{H}^{+}\right]+\mathrm{k}_{\mathrm{ba}} \mathrm{k}_{\mathrm{b}}}
\end{aligned}
$$

where $\mathrm{k}_{\mathrm{a}}, \mathrm{k}_{\mathrm{b}}, \mathrm{k}_{\mathrm{ab}}$ and k_{ba} are microequilibrium constants. In the denominator of the f_{b} expression, we made use of the relation $\mathrm{k}_{\mathrm{a}} \mathrm{k}_{\mathrm{ab}}=\mathrm{k}_{\mathrm{b}} \mathrm{k}_{\mathrm{ba}}$ from the previous problem.
C. (a) Calculate K_{1} and K_{2} for 2,3-diphosphoglycerate.
(b) Using the expressions for f_{a} and f_{b} from the previous problem, calculate the fraction of protonation at each site at pH 7.00 .
(c) Show that $\left[\mathrm{A}^{2-}\right] /\left[\mathrm{H}_{2} \mathrm{~A}\right]=\mathrm{k}_{\mathrm{ba}} \mathrm{k}_{\mathrm{b}} /\left[\mathrm{H}^{+}\right]^{2}$ and find this quotient at pH 7.00 . Based on this composition, estimate how many equivalents of OH^{-}in Figure 1 give pH 7.00.

Solutions to Exercises

A. $\mathrm{k}_{\mathrm{a}}+\mathrm{k}_{\mathrm{b}}=\frac{\left[\mathrm{H}_{\mathrm{b}} \mathrm{A}^{4-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{A}^{3-}\right]}+\frac{\left[\mathrm{H}_{\mathrm{a}} \mathrm{A}^{4-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{A}^{3-}\right]}=\frac{\left(\left[\mathrm{H}_{\mathrm{a}} \mathrm{A}^{4-}\right]+\left[\mathrm{H}_{\mathrm{b}} \mathrm{A}^{4-}\right]\right)\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{A}^{3-}\right]}=\mathrm{K}_{1}$

$$
\frac{\mathrm{k}_{\mathrm{ab}} \mathrm{k}_{\mathrm{ba}}}{\mathrm{k}_{\mathrm{ab}}+\mathrm{k}_{\mathrm{ba}}}=\frac{1}{\frac{1}{\mathrm{k}_{\mathrm{ba}}}+\frac{1}{\mathrm{k}_{\mathrm{ab}}}}=\frac{1}{\frac{\left[\mathrm{H}_{\mathrm{a}} \mathrm{~A}^{4-}\right]}{\left[\mathrm{A}^{5-}\right]\left[\mathrm{H}^{+}\right]}+\frac{\left[\mathrm{H}_{\mathrm{b}} \mathrm{~A}^{4-}\right]}{\left[\mathrm{A}^{5-}\right]\left[\mathrm{H}^{+}\right]}}=\frac{\left[\mathrm{A}^{5-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{\mathrm{a}} \mathrm{~A}^{4-}\right]+\left[\mathrm{H}_{\mathrm{b}} \mathrm{~A}^{4-}\right]}=\mathrm{K}_{2}
$$

$$
\mathrm{k}_{\mathrm{a}} \mathrm{k}_{\mathrm{ab}}=\frac{\left[\mathrm{H}_{\mathrm{b}} \mathrm{~A}^{4-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{~A}^{3-}\right]} \frac{\left[\mathrm{A}^{5-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{\mathrm{b}} \mathrm{~A}^{4-}\right]}=\frac{\left[\mathrm{H}_{\mathrm{a}} \mathrm{~A}^{4-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{~A}^{3-}\right]} \frac{\left[\mathrm{A}^{5-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{\mathrm{a}} \mathrm{~A}^{4-}\right]}=\mathrm{k}_{\mathrm{b}} \mathrm{k}_{\mathrm{ba}}
$$

B. $\mathrm{f}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{2} \mathrm{~A}\right]+\left[\mathrm{H}_{\mathrm{a}} \mathrm{A}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]+\left[\mathrm{H}_{\mathrm{a}} \mathrm{A}^{-}\right]+\left[\mathrm{H}_{\mathrm{b}} \mathrm{A}^{-}\right]+\left[\mathrm{A}^{2-}\right]}$

$$
\begin{array}{cc}
\begin{array}{c}
\text { divide } \\
\text { everything }
\end{array} & 1+\frac{\left[\mathrm{H}_{\mathrm{a}} \mathrm{~A}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]} \\
\begin{array}{c}
\text { by }
\end{array} & \frac{\left[\mathrm{H}_{\mathrm{a}} \mathrm{~A}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]}+\frac{\left[\mathrm{H}_{\mathrm{b}} \mathrm{~A}^{-}\right]}{\left.\mathrm{H}_{2} \mathrm{~A}\right]}+\frac{\left[\mathrm{A}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]}
\end{array}
$$

But $\left[\mathrm{H}_{\mathrm{a}} \mathrm{A}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{~A}\right]=\mathrm{k}_{\mathrm{b}} /\left[\mathrm{H}^{+}\right],\left[\mathrm{H}_{\mathrm{b}} \mathrm{A}^{-}\right] /\left[\mathrm{H}_{2} \mathrm{~A}\right]=\mathrm{K}_{\mathrm{a}} /\left[\mathrm{H}^{+}\right]$, and $\left[\mathrm{A}^{2-}\right] /\left[\mathrm{H}_{2} \mathrm{~A}\right]=$ $\mathrm{k}_{\mathrm{b}} \mathrm{k}_{\mathrm{ba}} /\left[\mathrm{H}^{+}\right]^{2}$. Substituting these expressions into the equation above gives

$$
\mathrm{f}_{\mathrm{a}}=\frac{1+\frac{\mathrm{k}_{\mathrm{b}}}{\left[\mathrm{H}^{+}\right]}}{1+\frac{\mathrm{k}_{\mathrm{b}}}{\left[\mathrm{H}^{+}\right]}+\frac{\mathrm{k}_{\mathrm{a}}}{\left[\mathrm{H}^{+}\right]}+\frac{\mathrm{k}_{\mathrm{b}} \mathrm{k}_{\mathrm{ba}}}{\left[\mathrm{H}^{+}\right]^{2}}} \stackrel{\begin{array}{c}
\text { multiply } \\
\text { everything }
\end{array}}{=} \frac{\left[\mathrm{H}^{+}\right]+\mathrm{k}_{\mathrm{b}}\left[\mathrm{H}^{+}\right]}{\text {by }} \quad \frac{\mathrm{H}^{+}}{\left[\mathrm{H}^{+}\right]^{2}+\mathrm{k}_{\mathrm{b}}\left[\mathrm{H}^{+}\right]+\mathrm{k}_{\mathrm{a}}\left[\mathrm{H}^{+}\right]+\mathrm{k}_{\mathrm{b}} \mathrm{k}_{\mathrm{ba}}}
$$

The f_{b} expression is derived similarly.
C. (a) $\mathrm{K}_{1}=\mathrm{k}_{\mathrm{a}}+\mathrm{k}_{\mathrm{b}}=4.4 \times 10^{-7} ; \quad \mathrm{K}_{2}=\frac{\mathrm{k}_{\mathrm{ab}} \mathrm{k}_{\mathrm{ba}}}{\mathrm{k}_{\mathrm{ab}}+\mathrm{k}_{\mathrm{ba}}}=5.0 \times 10^{-8}$
(b) $\mathrm{f}_{\mathrm{a}}=\frac{10^{-14}+1.5 \times 10^{-14}}{10^{-14}+1.5 \times 10^{-14}+2.9 \times 10^{-14}+2.25 \times 10^{-14}}=0.33$
$\mathrm{f}_{\mathrm{b}}=\frac{10^{-14}+2.9 \times 10^{-14}}{10^{-14}+1.5 \times 10^{-14}+2.9 \times 10^{-14}+2.25 \times 10^{-14}}=0.51$
(c) $\frac{\left[\mathrm{A}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{~A}\right]}=\frac{\mathrm{k}_{\mathrm{ba}} \mathrm{k}_{\mathrm{b}}}{\left[\mathrm{H}^{+}\right]^{2}}=2.25$

Measurements with a ruler on the graph show that $\left[\mathrm{A}^{2-}\right] /\left[\mathrm{H}_{2} \mathrm{~A}\right] \approx 2.25$ when equivalents of $\mathrm{OH}^{-} \approx 1.15$.

Spreadsheets for Redox Titration Curves

This section derives equations for calculating titration curves with spreadsheets. Our goal is a single equation that describes an entire titration curve with no approximations, except neglect of activity coefficients.

Titration with an Oxidizing Agent

Consider an oxidizing titrant such as Ce^{4+} added to a reducing analyte such as Fe^{2+}. Let T be the titrant and A be the analyte, and let the oxidation states change by one electron:

$$
\begin{equation*}
\underset{\text { titrant }}{\mathrm{T}}+\underset{\text { analyte }}{\mathrm{A}} \rightarrow \mathrm{~T}^{-} \quad+\quad \mathrm{A}^{+} \tag{1}
\end{equation*}
$$

The reduction half-reactions for the two reagents are

$$
\begin{array}{ll}
\mathrm{T}+\mathrm{e}^{-} \rightleftharpoons \mathrm{T}^{-} & \mathrm{E}=\mathrm{E}_{\mathrm{T}}^{\circ}-0.05916 \log \frac{\left[\mathrm{~T}^{-}\right]}{[\mathrm{T}]} \\
\mathrm{A}^{+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{A} & \mathrm{E}=\mathrm{E}_{\mathrm{A}}^{\circ}-0.05916 \log \frac{[\mathrm{~A}]}{\left[\mathrm{A}^{+}\right]}
\end{array}
$$

For a temperature other than $25^{\circ} \mathrm{C}$, the factor 0.05916 V is really (RT / F) $\ln 10$, where R is the gas constant, T is temperature in kelvins, and F is the Faraday constant.

Now we rearrange the two Nernst equations to find more useful relationships between the concentrations of reactants and products:

$$
\begin{equation*}
\mathrm{E}=\mathrm{E}_{\mathrm{T}}^{\circ}-0.05916 \log \frac{\left[\mathrm{~T}^{-}-\right]}{[\mathrm{T}]} \Rightarrow \frac{\left[\mathrm{T}^{-}\right]}{[\mathrm{T}]}=\underbrace{10\left(\mathrm{E}_{\mathrm{T}}^{\circ}-\mathrm{E}\right) / 0.05916}_{\text {This is } \tau} \Rightarrow\left[\mathrm{T}^{-}\right]=\tau[\mathrm{T}] \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{E}=\mathrm{E}_{\mathrm{A}}^{\circ}-0.05916 \log \frac{[\mathrm{~A}]}{\left[\mathrm{A}^{+}\right]} \Rightarrow \frac{[\mathrm{A}]}{\left[\mathrm{A}^{+}\right]}=10^{\left(\mathrm{E}_{\mathrm{A}}^{\circ}-\mathrm{E}\right) / 0.05916} \Rightarrow[\mathrm{~A}]=\alpha\left[\mathrm{A}^{+}\right] \tag{3}
\end{equation*}
$$

This is α
where $\tau \equiv 10^{\left(\mathrm{E}_{\mathrm{T}}^{\circ}-\mathrm{E}\right) / 0.05916}$ and $\alpha \equiv 10^{\left(\mathrm{E}_{\mathrm{A}}^{\circ}-\mathrm{E}\right) / 0.05916}$. The letters tau and alpha were chosen as mnemonics for "titrant" and "analyte."

Next, we use Equations 2 and 3 and two mass balances to find expressions for the
products of the titration reaction, $\left[\mathrm{T}^{-}\right]$and $\left[\mathrm{A}^{+}\right]$.
mass balance for titrant: $\quad[\mathrm{T}]+\left[\mathrm{T}^{-}\right]=\mathrm{T}_{\text {total }}$

$$
\begin{aligned}
& \frac{1}{\tau}\left[\mathrm{~T}^{-}\right]+\left[\mathrm{T}^{-}\right]=\mathrm{T}_{\text {total }} \\
& {\left[\mathrm{T}^{-}\right]\left(\frac{1}{\tau}+1\right)=\mathrm{T}_{\text {total }} \quad \Rightarrow\left[\mathrm{T}^{-}\right]=\frac{\tau \mathrm{T}_{\text {total }}}{1+\tau}}
\end{aligned}
$$

$$
\text { mass balance for analyte: } \quad[\mathrm{A}]+\left[\mathrm{A}^{+}\right]=\mathrm{A}_{\text {total }} \quad \Rightarrow\left[\mathrm{A}^{+}\right]=\frac{\mathrm{A}_{\text {total }}}{1+\alpha}
$$

Trying to contain our excitement, we carry on, for we have nearly derived a master equation for the titration. From the stoichiometry of Reaction 1, we know that $\left[\mathrm{T}^{-}\right]=\left[\mathrm{A}^{+}\right]$, because they are created in a 1:1 mole ratio. Equating $\left[\mathrm{T}^{-}\right]$and $\left[\mathrm{A}^{+}\right]$, we find

$$
\begin{gather*}
{\left[\mathrm{T}^{-}\right]=\left[\mathrm{A}^{+}\right]} \\
\frac{\tau \mathrm{T}_{\text {total }}}{1+\tau}=\frac{\mathrm{A}_{\text {total }}}{1+\alpha} \tag{4}
\end{gather*}
$$

But the fraction of the way (ϕ) to the equivalence point is just the quotient $\mathrm{T}_{\text {total }} / \mathrm{A}_{\text {total }}$. That is, when the total concentration of $\mathrm{T}\left(=[\mathrm{T}]+\left[\mathrm{T}^{-}\right]\right)$equals the total concentration of A $\left(=[\mathrm{A}]+\left[\mathrm{A}^{+}\right]\right)$, we are at the equivalence point.

$$
\text { fraction of titration: } \quad \phi=\frac{\mathrm{T}_{\text {total }}}{\mathrm{A}_{\text {total }}} \quad(=1 \text { at equivalence point })
$$

If the stoichiometry required, say, 2 mol of T for 3 mol of A , the fraction of titration would be $\phi=\frac{3 \mathrm{~T}_{\text {total }}}{2 \mathrm{~A}_{\text {total }}}$, because we demand that $\phi=1$ at the equivalence point.

Rearranging Equation 4 to solve for the fraction of titration gives the master equation for the titration curve:

Titration with an oxidizing titrant:

$$
\begin{equation*}
\phi=\frac{1+\tau}{\tau(1+\alpha)} \tag{5}
\end{equation*}
$$

Equation 5 gives the fraction of titration as a function of the potential, E, which is buried in the numbers τ and α, defined in Equations 2 and 3. The titration curve is a graph of E versus ϕ. We will compute the curve in the reverse manner by inputting values of E and finding values of ϕ.

Let's amplify what ϕ means. If the equivalence point of a titration is 50 mL , then ϕ $=1$ at 50 mL . When 25 mL of titrant has been added, $\phi=0.5$. When 55 mL of titrant has been added, $\phi=1.1$. In the spreadsheet approach to redox titration curves, we input E and compute ϕ. If we know that the equivalence volume is V_{e}, then we compute the volume at
any point in the titration from the relationship volume $=\phi \mathrm{V}_{\mathrm{e}}$.

EXAMPLE Spreadsheet Calculation of the $\mathrm{Ce}^{4+} / \mathrm{Fe}^{2+}$ Titration Curve

Suppose that we titrate 100.0 mL of $0.0500 \mathrm{M} \mathrm{Fe}^{2+}$ with $0.100 \mathrm{M} \mathrm{Ce}^{4+}$ using the cell in Figure $15-1$ of the textbook. $\mathrm{V}_{\mathrm{e}}=50.0 \mathrm{~mL}$, which means that $\phi=1$ when $\mathrm{V}_{\mathrm{Ce}^{4+}}=50.0$ mL . Use Equation 5 to compute the voltages in Figure 15-2 of the textbook for titrant volumes of $50.0,36.0$, and 63.0 mL .

Solution The titration reaction is

$$
\mathrm{Ce}^{4+}+\mathrm{Fe}^{2+} \rightarrow \mathrm{Ce}^{3+}+\mathrm{Fe}^{3+}
$$

and the half-reactions, written as reductions, are

$$
\begin{array}{ll}
\mathrm{Ce}^{4+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Ce}^{3+} & \Rightarrow \tau=10^{\left(\mathrm{E}_{\mathrm{T}}^{\circ}-\mathrm{E}\right) / 0.05916}=10^{(1.70-\mathrm{E}) / 0.05916} \\
\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+} & \Rightarrow \alpha=10^{\left(\mathrm{E}_{\mathrm{A}}^{\circ}-\mathrm{E}\right) / 0.05916}=10^{(0.767-\mathrm{E}) / 0.05916}
\end{array}
$$

In the spreadsheet in Figure 1, constants in column A are the standard reduction potentials, the quantity 0.05916 V in the Nernst equation, and the equivalence volume, 50 mL . Values of E (versus S.H.E.) in column B are input to the spreadsheet. Columns C and D compute τ and α, and column E calculates ϕ with Equation 5. Column F converts E from the S.H.E. scale to the S.C.E. scale by subtracting 0.241 V . Column G multiplies ϕ by 50 mL to convert the fraction of titration into volume of titrant.

To find the voltage for a particular volume of titrant, we vary E in column B until the desired volume appears in column G. Rows $12-14$ in the spreadsheet compute voltages for $50.0,36.0$, and 63.0 mL .

Because titration curves are steep near the equivalence point, we recommend setting the precision of ϕ to 12 digits while varying E to search for the equivalence point potential. Then the precision of ϕ can set back down to a reasonable number to display the results.

Equation 5 Applies to Many Oxidation Stoichiometries

Equation 5 applies to any titration in which T oxidizes A , providing neither reagent breaks into smaller fragments or associates into larger molecules. The stoichiometry of the reaction of T with A need not be 1:1, and there may be any number of electrons or other species (such as H^{+}and $\mathrm{H}_{2} \mathrm{O}$) involved in the reaction. Thus, Equation 5 applies to the titration

$$
\underset{\text { titrant }}{\mathrm{MnO}_{4}^{-}}+\underset{\text { analyte }}{5 \mathrm{Fe}^{2+}}+8 \mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}
$$

but not to the titration

$$
\underset{\text { titrant }}{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}}+\underset{\text { analyte }}{65 \mathrm{Fe}^{2+}}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

because $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ breaks apart into two Cr^{3+} ions in the latter reaction. (The dichromate reaction is treated as a special case in Problem I below.

	A	B	C		E	F	G
	$\mathrm{E}^{\circ}(\mathrm{T})=$	E (vs S.H.E.)	Tau	Alpha	Phi	E(vs S.C.E.)	Volume (mL)
2	1.7	0.600	$3.92 \mathrm{E}+18$	$6.65 \mathrm{E}+02$	0.00150	0.359	- 0.075
3	$\mathrm{E}^{\circ}(\mathrm{A})=$	0.700	$8.00 \mathrm{E}+16$	$1.36 \mathrm{E}+01$	0.06864	0.459	3.432
4	0.767	0.767	$5.90 \mathrm{E}+15$	$1.00 \mathrm{E}+00$	0.50000	0.526	- 25.000
5	Nernst $=$	0.800	$1.63 \mathrm{E}+15$	$2.77 \mathrm{E}-01$	0.78320	- 0.559	- 39.160
6	0.05916	1.000	$6.80 \mathrm{E}+11$	$1.15 \mathrm{E}-04$	0.99988	0.759	- 49.994
7	$\mathrm{Ve}=$	1.200	$2.83 \mathrm{E}+08$	$4.80 \mathrm{E}-08$	1.00000	0.959	- 50.000
8	50	1.400	$1.18 \mathrm{E}+05$	$2.00 \mathrm{E}-11$	1.00001	1.159	- 50.000
9		1.600	$4.90 \mathrm{E}+01$	$8.31 \mathrm{E}-15$	1.02040	1.359	- 51.020
10		1.700	$1.00 \mathrm{E}+00$	$1.70 \mathrm{E}-16$	2.00000	1.459	100.000
11							
12		1.2335	$7.68 \mathrm{E}+07$	$1.30 \mathrm{E}-08$	1.00000	0.993	3 50.000
13		0.79127	$2.29 \mathrm{E}+15$	$3.89 \mathrm{E}-01$	0.72003	0.550	- 36.002
14		1.66539	$3.85 \mathrm{E}+00$	$6.52 \mathrm{E}-16$	1.26000	1.424	$4 \quad 63.000$
15							
16	C2 = 10^((\$A\$2-B2)/\$A\$6)			$\mathrm{E} 2=(1+\mathrm{C} 2) /(\mathrm{C} 2 *(1+\mathrm{D} 2))$			$\mathrm{G} 2=\$ \mathrm{~A} \$ 8 * \mathrm{E} 2$
$17 \mathrm{D} 2=10^{\wedge}((\$ \mathrm{~A} 4-\mathrm{B} 2) /$ / A\$6)				F2 = B2-0.241			

Figure 1. Spreadsheet for titration of Fe^{2+} with Ce^{4+} based on Equation 5. Column B is the input and column E is the principal output. The fraction of titration in column E is converted to volume in column G, and potential (versus S.H.E.) in column B is converted to potential (versus. S.C.E.) in column F. A titration curve is a graph of column F versus column G.

When the Stoichiometry is Not $\mathbf{1 : 1}$

Suppose that Cu^{+}is titrated with Tl^{3+} in $1 \mathrm{M} \mathrm{HClO}_{4}$:

$$
\underset{\text { titrant }}{\mathrm{Tl}^{3+}}+\underset{\text { analyte }}{2 \mathrm{Cu}^{+}} \rightarrow \mathrm{Tl}^{+}+2 \mathrm{Cu}^{2+}
$$

The values of τ and α are computed from the half-reactions:

$$
\begin{align*}
\mathrm{Tl}^{3+}+2 \mathrm{e}^{-} & \rightleftharpoons \mathrm{Tl}^{+} \quad \mathrm{E}=1.26-\frac{0.05916}{2} \log \frac{\left[\mathrm{Tl}^{+}\right]}{\left[\mathrm{Tl}^{3+}\right]} \\
\Rightarrow \tau & \equiv \frac{\left[\mathrm{Tl}^{+}\right]}{\left[\mathrm{Tl}^{3+}\right]}=10^{2(1.26-E) / 0.05916 \quad(n o t e} 2 \mathrm{e}^{-} \text {in the exponent) } \tag{6}\\
\mathrm{Cu}^{2+}+\mathrm{e}^{-} & \rightleftharpoons \mathrm{Cu}^{+} \quad \mathrm{E}=0.339-0.05916 \log \frac{\left[\mathrm{Cu}^{+}\right]}{\left[\mathrm{Cu}^{2+}\right]} \\
\Rightarrow \alpha & \equiv \frac{\left[\mathrm{Cu}^{+}\right]}{\left[\mathrm{Cu}^{2+}\right]}=10^{(0.339-E) / 0.05916} \tag{7}
\end{align*}
$$

Combining the mass balances with τ and α leads to the expressions

$$
\left[\mathrm{T} \mathrm{l}^{+}\right]=\frac{\tau \mathrm{Tl}_{\text {total }}}{1+\tau} \quad\left[\mathrm{Cu}^{2+}\right]=\frac{\mathrm{Cu}_{\text {total }}}{1+\alpha}
$$

where $\mathrm{Tl}_{\text {total }}=\left[\mathrm{Tl}^{3+}\right]+\left[\mathrm{Tl}^{+}\right]$and $\mathrm{Cu}_{\text {total }}=\left[\mathrm{Cu}^{2+}\right]+\left[\mathrm{Cu}^{+}\right]$.
Now we know that $\left[\mathrm{Cu}^{2+}\right]=2\left[\mathrm{Tl}^{+}\right]$, because these products are created in a $2: 1$ mole ratio. Inserting the expressions above for $\left[\mathrm{Tl}^{+}\right]$and $\left[\mathrm{Cu}^{2+}\right]$ into this equality gives

$$
\begin{equation*}
\frac{\mathrm{Cu}_{\text {total }}}{1+\alpha}=\frac{2 \tau \mathrm{Tl}_{\text {total }}}{1+\tau} \tag{8}
\end{equation*}
$$

Because the reaction requires one Tl^{3+} for two Cu^{+}ions, the fraction of titration is

$$
\phi \equiv \frac{2 \mathrm{Tl}_{\text {total }}}{\mathrm{Cu}_{\text {total }}} \stackrel{\text { from Eq. } 8}{=} \frac{(1+\tau)}{\tau(1+\alpha)}
$$

The factor of 2 appears in the definition of ϕ because the fraction of titration is defined as unity at the equivalence point. The final result is identical to Equation 5, which was derived for $1: 1$ stoichiometry.

Adding H^{+}and Other Reactants

Now consider the titration of Tl^{+}by iodate in HCl solution:

$$
\underset{\text { Thallic }}{\mathrm{IO}_{3}^{-}}+\underset{\text { Iodate }}{\text { (titrant) }} \begin{gathered}
\text { Thallous } \\
\text { (analyte) }
\end{gathered}
$$

Thallium is the analyte in this example. Its half-reaction is the same as in the preceding example, with a formal potential of 0.77 V in 1 M HCl .

$$
\begin{align*}
\mathrm{Tl}^{3+}+2 \mathrm{e}^{-} & \rightleftharpoons \mathrm{Tl}^{+} \quad \mathrm{E}=0.77-\frac{0.05916}{2} \log \frac{\left[\mathrm{Tl}^{+}\right]}{\left[\mathrm{Tl}^{3+}\right]} \\
& \Rightarrow \alpha \equiv \frac{\left[\mathrm{Tl}^{+}\right]}{\left[\mathrm{Tl}^{3+}\right]}=10^{2(0.77-\mathrm{E}) / 0.05916}
\end{align*}
$$

The iodate half reaction is more complicated:

$$
\mathrm{IO}_{3}^{-}+2 \mathrm{Cl}^{-}+6 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightleftharpoons \mathrm{ICl}_{2}^{-}+3 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}=1.24-\frac{0.05916}{4} \log \frac{\left[\mathrm{ICl}_{2}^{-}\right]}{\left[\mathrm{IO}_{3}^{-}\right]\left[\mathrm{Cl}^{-}\right]^{2}\left[\mathrm{H}^{+}\right]^{6}}
$$

We find τ by solving for the quotient $\left[\mathrm{ICl}_{2}^{-}\right] /\left[\mathrm{IO}_{3}^{-}\right]$, but now we must deal with extra terms involving $\left[\mathrm{Cl}^{-}\right]$and $\left[\mathrm{H}^{+}\right]$:

$$
\begin{gathered}
\log \frac{\left[\mathrm{ICl}_{2}^{-}\right]}{\left[\mathrm{IO}_{3}^{-}\right]\left[\mathrm{Cl}^{-}\right]^{2}\left[\mathrm{H}^{+}\right]^{6}}=\frac{4(1.24-\mathrm{E})}{0.05916} \\
\log \frac{\left[\mathrm{ICl}_{2}^{-}\right]}{\left[\mathrm{IO}_{3}^{-}\right]}-2 \log \left[\mathrm{Cl}^{-}\right]-6 \log \left[\mathrm{H}^{+}\right]=\frac{4(1.24-\mathrm{E})}{0.05916} \\
\log \frac{\left[\mathrm{ICl}_{2}^{-}\right]}{\left[\mathrm{IO}_{3}^{-}\right]}+2 \mathrm{pCl}+6 \mathrm{pH}=\frac{4(1.24-\mathrm{E})}{0.05916} \\
\log \frac{\left[\mathrm{ICl}_{2}^{-}\right]}{\left[\mathrm{IO}_{3}^{-}\right]}=\underbrace{\frac{4(1.24-\mathrm{E})}{0.05916}-2 \mathrm{pCl}-6 \mathrm{pH}}_{\tau}
\end{gathered}
$$

$\frac{\left[\mathrm{ICl}_{2}^{-}\right]}{\left[\mathrm{IO}_{3}^{-}\right]}=10^{\{[4(1.24-\mathrm{E}) / 0.05916]-2 \mathrm{pCl}-6 \mathrm{pH}\}}$
To complete the derivation, we equate $\left[\mathrm{Tl}^{3+}\right]$ to $2\left[\mathrm{IO}_{3}^{-}\right]$and define ϕ as $2 \mathrm{I}_{\text {total }} / \mathrm{Tl}_{\text {total }}$ to find the same expression we found before, Equation 5. Note that $\mathrm{Tl}_{\text {total }}=$ $\left[\mathrm{Tl}^{3+}\right]+\left[\mathrm{Tl}^{+}\right]$and $\mathrm{I}_{\text {total }}=\left[\mathrm{IO}_{3}^{-}\right]+\left[\mathrm{ICl}_{2}^{-}\right]$.

EXAMPLE Spreadsheet Calculation of the $\mathrm{IO}_{3}^{-} / \mathrm{Tl}^{+}$Titration Curve

Suppose that we titrate 100.0 mL of $0.0100 \mathrm{M} \mathrm{Tl}^{2+}$ with $0.0100 \mathrm{M} \mathrm{IO}_{3}^{-}$, using Pt and saturated calomel electrodes. Assume that all solutions contain 1.00 M HCl , which means that $\mathrm{pH}=\mathrm{pCl}=-\log (1.00)=0.00$ in Equation 10. Because $1 \mathrm{~mol}^{\mathrm{of}} \mathrm{IO}_{3}^{-}$consumes 2 mol of Tl^{+}, the equivalence volume is 50.0 mL . Therefore $\phi=1$ when $\mathrm{V}_{\mathrm{IO}_{3}^{-}}=50.0 \mathrm{~mL}$. Use Equation 5 to compute the titration curve.

Solution The formulas for α and τ are given in Equations 9 and 10. The work is set out in Figure 2, in which we have added $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{Cl}^{-}\right]$as constants in column A.

	A	B	C		E	F	G
1	$\mathrm{E}^{\circ}(\mathrm{T})=$	E (vs S.H.E.)	Tau	Alpha	Phi	E(vs S.C.E.)	Volume (mL)
2	1.24	0.700	$3.24 \mathrm{E}+36$	$2.33 \mathrm{E}+02$	0.00428	0.459	0.214
3	$\mathrm{E}^{\circ}(\mathrm{A})=$	0.770	$6.00 \mathrm{E}+31$	$1.00 \mathrm{E}+00$	0.50000	0.529	25.000
4	0.77	0.800	$5.62 \mathrm{E}+29$	$9.68 \mathrm{E}-02$	0.91176	0.559	45.588
	Nernst =	0.900	$9.74 \mathrm{E}+22$	$4.03 \mathrm{E}-05$	0.99996	0.659	49.998
6	0.05916	1.083	$4.12 \mathrm{E}+10$	$2.62 \mathrm{E}-11$	1.00000	0.842	50.000
7	$\mathrm{Ve}=$	1.200	$5.06 \mathrm{E}+02$	$2.91 \mathrm{E}-15$	1.00197	0.959	50.099
	50	1.24	$1.00 \mathrm{E}+00$	$1.29 \mathrm{E}-16$	2.00000	0.999	100.000
9	$\mathrm{pCl}=$						
10	0						
11	$\mathrm{pH}=$		$\mathrm{D} 2=10^{\wedge}\left(2 *(\$ \mathrm{~A} 4-\mathrm{B} 2) /\right.$ \$ ${ }^{\text {a }}$ (6)				
12	0		$\mathrm{E} 2=(1+\mathrm{C} 2) /(\mathrm{C} 2 *(1+\mathrm{D} 2)$)				
13			F2 = B2-0.241				
14			G2 = \$A\$8*E2				

Figure 2. Spreadsheet for titration of Tl^{+}with iodate in Figure 15-3 of the textbook, based on Equation 5. Input in column B is varied to obtain output in column G at any desired volume. Note that the curve is not symmetric about the equivalence point because the stoichiometry of reactants is not 1:1.

Titration with a Reducing Agent

Following the same reasoning used above, we can show that if a reducing titrant is used, the general equation for the titration curve is

Titration with
reducing titrant:

$$
\begin{equation*}
\phi=\frac{\alpha(1+\tau)}{1+\alpha} \tag{11}
\end{equation*}
$$

where τ applies to the titrant and α applies to the analyte.

Titration of a Mixture

The titration of two species exhibits two breaks if the standard potentials of the redox couples are sufficiently different. Figure 3 shows the theoretical titration curve for an equimolar mixture of Tl^{+}and Sn^{2+} titrated with IO_{3}^{-}. The two titration reactions are

$$
\begin{equation*}
\text { first: } \quad \mathrm{IO}_{3}^{-}+2 \mathrm{Sn}^{2+}+2 \mathrm{Cl}^{-}+6 \mathrm{H}^{+} \rightarrow \mathrm{ICl}_{2}^{-}+2 \mathrm{Sn}^{4+}+3 \mathrm{H}_{2} \mathrm{O} \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\text { second: } \quad \mathrm{IO}_{3}^{-}+2 \mathrm{Tl}^{+}+2 \mathrm{Cl}^{-}+6 \mathrm{H}^{+} \rightarrow \mathrm{ICl}_{2}^{-}+2 \mathrm{Tl}^{3+}+3 \mathrm{H}_{2} \mathrm{O} \tag{13}
\end{equation*}
$$

and the relevant half-reactions are

$$
\begin{aligned}
& \mathrm{IO}_{3}^{-}+ 2 \mathrm{Cl}^{-}+6 \mathrm{H}^{+}+4 \mathrm{e}^{-} \rightleftharpoons \mathrm{ICl}_{2}^{-}+3 \mathrm{H}_{2} \mathrm{O} \\
& \Rightarrow \tau \equiv \frac{\left[\mathrm{ICl}_{2}^{-}\right]}{\left[\mathrm{IO}_{3}^{-}\right]}=10\{[4(1.24-\mathrm{E}) / 0.05916]-2 \mathrm{pCl}-6 \mathrm{pH}\} \\
& \mathrm{E}^{\circ}=1.24 \mathrm{~V} \\
& \mathrm{Sn}^{4+}+ 2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Sn}^{2+} \\
& \Rightarrow \alpha_{1} \equiv \frac{\left[\mathrm{Sn}^{2+}\right]}{\left[\mathrm{Sn}^{4+}\right]}=10^{2(0.139-\mathrm{E}) / 0.05916} \\
& \mathrm{Tl}^{3+}+ 2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Tl}^{+} \\
& \Rightarrow \alpha_{2} \equiv \frac{\left[\mathrm{Tl}^{+}\right]}{\left[\mathrm{Tl}^{3+}\right]}=10^{2(0.77-\mathrm{E}) / 0.05916}
\end{aligned}
$$

Because the $\mathrm{Sn}^{4+} \mid \mathrm{Sn}^{2+}$ couple has a lower reduction potential than the $\mathrm{Tl}^{3+} \mid \mathrm{Tl}^{+}$couple, Sn^{2+} will be oxidized before Tl^{+}. That is, the equilibrium constant for Reaction 12 is larger than for Reaction 13. This is another way of saying that Sn^{2+} is a stronger reducing agent than Tl^{+}.

To derive an equation for the titration of a mixture, the mass balance equates $\left[\mathrm{ICl}_{2}^{-}\right.$] to the sum $\frac{1}{2}\left[\mathrm{Sn}^{4+}\right]+\frac{1}{2}\left[\mathrm{Tl}^{3+}\right]$, because 1 mol of ICl_{2}^{-}is generated for every 2 mol of Sn^{4+} and 1 mol of ICl_{2}^{-}is generated for every 2 mol of Tl^{3+} :

$$
\begin{gather*}
{\left[\mathrm{ICl}_{2}^{-}\right]=\frac{1}{2}\left[\mathrm{Sn}^{4+}\right]+\frac{1}{2}\left[\mathrm{Tl}^{3+}\right]} \tag{14}\\
\frac{\tau \mathrm{I}_{\text {total }}}{1+\tau}=\frac{1}{2}\left(\frac{\mathrm{Sn}_{\text {total }}}{1+\alpha_{1}}\right)+\frac{1}{2}\left(\frac{\mathrm{Tl}_{\text {total }}}{1+\alpha_{2}}\right)
\end{gather*}
$$

Titration of a mixture:

$$
\phi \equiv 2\left(\frac{\mathrm{I}_{\text {total }}}{\mathrm{Sn}_{\text {total }}}\right)=\frac{1+\tau}{\tau}\left(\frac{1}{1+\alpha_{1}}+\frac{\mathrm{Tl}_{\text {total }} / \mathrm{Sn}_{\text {total }}}{1+\alpha_{2}}\right)
$$

$$
\uparrow
$$

Factor of 2 appears because 1 mol of
IO_{3}^{-}reacts with 2 mol of Sn^{2+} and
ϕ must be unity at the equivalence point
Equation 15 describes the titration curve in Figure 3. The factors of $\frac{1}{2}$ in Equation 14 arise from the stoichiometry of reaction of titrant with each analyte. In general, these two fractions will not be $\frac{1}{2}$ and will be different from each other. The factor $\mathrm{Tl}_{\text {total }} / \mathrm{Sn}_{\text {total }}$ gives
the ratio of moles of analytes in the original solution.

Figure 3
Theoretical curve for 100.0 mL containing $0.0100 \mathrm{M} \mathrm{Tl}^{+}$plus $0.0100 \mathrm{M} \mathrm{Sn}^{2+}$ titrated with $0.0100 \mathrm{M} \mathrm{IO}_{3}^{-}$, calculated with Equation 15. All solutions contain 1.00 M HCl .

Exercises

A. Use a spreadsheet to prepare a titration curve (potential referenced to saturated calomel electrode versus volume of titrant) for each case below. Compute the potential at $0.01 \mathrm{~V}_{\mathrm{e}}, 0.5 \mathrm{~V}_{\mathrm{e}}, 0.99 \mathrm{~V}_{\mathrm{e}}, 0.999 \mathrm{~V}_{\mathrm{e}}, \mathrm{V}_{\mathrm{e}}, 1.01 \mathrm{~V}_{\mathrm{e}}, 1.1 \mathrm{~V}_{\mathrm{e}}$ and $2 \mathrm{~V}_{\mathrm{e}}$.
(a) Titration of 25.00 mL of $0.0200 \mathrm{M} \mathrm{Cr}^{2+}$ with $0.01000 \mathrm{M} \mathrm{Fe}^{3+}$ in $1 \mathrm{M} \mathrm{HClO}_{4}$.
(b) Titration of 50.0 mL of $0.0500 \mathrm{M} \mathrm{Fe}^{2+}\left(\mathrm{E}^{\circ}=0.68 \mathrm{~V}\right)$ with $0.0500 \mathrm{M} \mathrm{MnO}_{4}^{-}$at pH 1.00 in $\mathrm{H}_{2} \mathrm{SO}_{4}$.
(c) Titration of 50 mL of $0.0208 \mathrm{M} \mathrm{Fe}^{3+}$ with 0.0173 M ascorbic acid at pH 1.00 in HCl .
(d) Titration of 50.0 mL of $0.050 \mathrm{M} \mathrm{UO}_{2}^{2+}$ in 1 M HCl with $0.100 \mathrm{M} \mathrm{Sn}^{2+}$ to give U^{4+} and Sn^{4+}.
B. Use a spreadsheet to prepare a titration curve (potential referenced to saturated $\mathrm{Ag} \mid \mathrm{AgCl}$ electrode vs. volume of titrant) for each case below. In addition, compute the potential at the following specific points: $0.01 \mathrm{~V}_{\mathrm{e}}, 0.5 \mathrm{~V}_{\mathrm{e}}, 0.99 \mathrm{~V}_{\mathrm{e}}$, $0.999 \mathrm{~V}_{\mathrm{e}}, \mathrm{V}_{\mathrm{e}}, 1.01 \mathrm{~V}_{\mathrm{e}}, 1.1 \mathrm{~V}_{\mathrm{e}}$ and $2 \mathrm{~V}_{\mathrm{e}}$.
(a) Titration of 25.00 mL of $0.0200 \mathrm{M} \mathrm{Fe}^{3+}$ with $0.01000 \mathrm{M} \mathrm{Cr}^{2+}$ in 1.00 M HClO_{4}.
(b) Titration of 10.0 mL of $0.0500 \mathrm{M} \mathrm{MnO}_{4}^{-}$with $0.0500 \mathrm{M} \mathrm{Fe}^{2+}$ at $\mathrm{pH}-0.30$ in $\mathrm{H}_{2} \mathrm{SO}_{4}$.
(c) Titration of 50 mL of $0.0208 \mathrm{M} \mathrm{Fe}^{3+}$ with 0.0173 M ascorbic acid at pH 0.00 in HCl .
(d) Titration of 50.0 mL of $0.050 \mathrm{M} \mathrm{Sn}^{2+}$ in 1 M HCl with $0.100 \mathrm{M} \mathrm{UO}_{2}^{2+}$ to give Sn^{4+} and U^{4+}.
C. Set up a spreadsheet to compute the curve for the titration of 100.0 mL of 0.0100 $\mathrm{M} \mathrm{Tl}^{+}$with $0.0100 \mathrm{M} \mathrm{IO}_{3}^{-}$. Investigate what happens if the constant concentration of HCl in both solutions is (a) 0.5 , (b) 1.0 , and (c) 2.0 M . Assume that the formal potential of the $\mathrm{Tl}^{3+} \mid \mathrm{Tl}^{+}$couple remains at 0.77 V (which is a poor approximation).
D. Chromous ion $\left(\mathrm{Cr}^{2+}\right)$ was titrated with chlorate, ClO_{3}^{-}, at $\mathrm{pH}=-0.30$ to give Cr^{3+} and Cl^{-}. The potential was measured with Pt and saturated $\mathrm{Ag} \mid \mathrm{AgCl}$ electrodes.
(a) Write a balanced half-reaction for $\mathrm{ClO}_{3}^{-} \rightleftharpoons \mathrm{Cl}^{-}$.
(b) Using just the information below, find E° for the ClO_{3}^{-}half-reaction.

$$
\begin{array}{cl}
\mathrm{ClO}_{3}^{-}+6 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightleftharpoons \frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O} & \mathrm{E}^{\circ}=1.458 \mathrm{~V} \\
\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cl}^{-} & \mathrm{E}^{\circ}=1.360 \mathrm{~V}
\end{array}
$$

(c) Compute and graph the titration curve for titrant volume $=0$ to volume $=2 \mathrm{~V}_{\mathrm{e}}$.
E. (a) A $100.0-\mathrm{mL}$ solution containing $0.0100 \mathrm{M} \mathrm{Tl}^{+}$plus $0.0100 \mathrm{M} \mathrm{Sn}^{2+}$ in 1.00 M HCl was titrated with $0.0100 \mathrm{M} \mathrm{IO}_{3}^{-}$containing 1.00 M HCl . Prepare a spreadsheet to find the potential when $20.0,25.0,50.0,60.0,75.0,100.0$, and 110.0 mL of titrant has been added.
(b) Prepare a spreadsheet for the titration in (a) if the concentrations are changed to $5.00 \mathrm{mM} \mathrm{Tl}^{+}$and $15.0 \mathrm{mM} \mathrm{Sn}^{2+}$. Find the potential at the following volumes: $20.0,37.5,74.0,75.0,76.0,87.5,100.0$ and 110.0 mL .
F. A $25.0-\mathrm{mL}$ solution containing a mixture of U^{4+} and Fe^{2+} in $1 \mathrm{M} \mathrm{HClO}_{4}$ was titrated with $0.00987 \mathrm{M} \mathrm{KMnO}_{4}$ in $1 \mathrm{M} \mathrm{HClO}_{4}$.
(a) Write balanced equations for the two titration reactions in the order in which they occur.
(b) Potentiometric end points were observed at 12.73 and 31.21 mL . Calculate the molarities of U^{4+} and Fe^{2+} in the unknown.
(c) Defining the fraction of titration, ϕ, such that $\phi=1$ at the first equivalence point, show that

$$
\phi=\frac{5}{2} \frac{\mathrm{Mn}_{\text {total }}}{\mathrm{U}_{\text {total }}}=\left(\frac{1+\tau}{\tau}\right)\left(\frac{1}{1+\alpha_{1}}+\frac{1}{2} \frac{\mathrm{Fe}_{\text {total }} / \mathrm{U}_{\mathrm{total}}}{1+\alpha_{2}}\right)
$$

where α_{1} refers to U^{4+} and α_{2} refers to Fe^{2+}.
(d) Calculate the potential (versus S.H.E.) at $\frac{1}{2} \mathrm{~V}_{\mathrm{e} 1}, \mathrm{~V}_{\mathrm{e} 1}, \mathrm{~V}_{\mathrm{e} 1}+\frac{1}{2} \mathrm{~V}_{\mathrm{e} 2}(=21.97$ $\mathrm{mL})$, and $\mathrm{V}_{\mathrm{e} 2}(=31.21 \mathrm{~mL})$, where $\mathrm{V}_{\mathrm{e} 1}$ and $\mathrm{V}_{\mathrm{e} 2}$ are the two equivalence volumes.
(e) Graph the titration curve up to 50 mL .
G. Consider the titration of analytes A and B by 1.00 M oxidizing titrant T :

$$
\begin{array}{rlr}
\mathrm{T}(\mathrm{aq}) & +3 \mathrm{e}^{-} \rightleftharpoons \mathrm{T}^{3-}(\mathrm{aq}) & \mathrm{E}_{\mathrm{T}}^{\circ}=0.93 \mathrm{~V} \\
& \Rightarrow \tau=\frac{\left[\mathrm{T}^{3-}\right]}{[\mathrm{T}]}=10^{3(0.93-\mathrm{E}) / 0.05916} & \\
\mathrm{~A}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{A}(\mathrm{aq}) & \mathrm{E}_{\mathrm{A}}^{\circ}=-0.13 \mathrm{~V} \\
& \Rightarrow \alpha=\frac{[\mathrm{A}]}{\left[\mathrm{A}^{2+}\right]}=10^{2(-0.13-\mathrm{E}) / 0.05916} &
\end{array}
$$

$$
\begin{array}{rlrl}
\mathrm{B}^{+}(\mathrm{aq}) & +\mathrm{e}^{-} & \rightleftharpoons \mathrm{B}(\mathrm{aq}) & \mathrm{E}_{\mathrm{B}}^{\circ}=0.46 \mathrm{~V} \\
\Rightarrow \beta & =\frac{[\mathrm{B}]}{\left[\mathrm{B}^{+}\right]}=10^{(0.46-\mathrm{E}) / 0.05916} &
\end{array}
$$

The initial volume of 100.0 mL contains 0.300 M A and 0.0600 MB .
(a) Write the two titration reactions in the order in which they occur. Calculate the equilibrium constant for each one.
(b) Find the two equivalence volumes, designated $\mathrm{V}_{\mathrm{e} 1}$ and $\mathrm{V}_{\mathrm{e} 2}$.
(c) Defining the fraction of titration (ϕ) to be unity at the first equivalence point, show that

$$
\phi=\frac{3}{2} \frac{\mathrm{~T}_{\text {total }}}{\mathrm{A}_{\text {total }}}=\left(\frac{1+\tau}{\tau}\right)\left(\frac{1}{1+\alpha}+\frac{1}{2} \frac{\mathrm{~B}_{\text {tota }} / \mathrm{A}_{\text {total }}}{1+\beta}\right)
$$

(d) Use a spreadsheet to prepare a graph of the titration curve (E versus S.H.E.).
(e) What are the potentials at the two equivalence points? Use 12 decimal places for V_{e} to obtain 3 digits for the equivalence point potential.
H. Suppose that 100.0 mL of solution containing $0.100 \mathrm{M} \mathrm{Fe}^{2+}$ and $5.00 \times 10^{-5} \mathrm{M}$ $\operatorname{tris}\left(1,10-\right.$ phenanthroline) Fe (II) (ferroin) are titrated with $0.0500 \mathrm{M} \mathrm{Ce}^{4+}$ in 1 M HClO_{4}. Calculate the potential (versus S.H.E.) at the following volumes of Ce^{4+} and prepare a graph of the titration curve: $1.0,10.0,100.0,190.0,199.0,200.0$, $200.05,200.10,200.15,200.2,201.0$, and 210.0 mL . Is ferroin a suitable indicator for the titration?
I. Derivation of Spreadsheet Equation for Dichromate Titrations. Consider the titration of 120.0 mL of $0.0100 \mathrm{M} \mathrm{Fe}^{2+}$ by 0.0200 M dichromate at $\mathrm{pH}=1.00$:

$$
\begin{aligned}
& \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{Fe}^{2+}+14 \mathrm{H}^{+} \rightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \\
& \text { Titrant Analyte }
\end{aligned}
$$

The half-reaction for analyte is $\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}$

$$
\mathrm{E}^{\circ}=0.771 \mathrm{~V}
$$

$$
\begin{aligned}
\Rightarrow & \alpha=\frac{\left[\mathrm{Fe}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]}=10^{(0.771-\mathrm{E}) / 0.05916} \\
& {\left[\mathrm{Fe}^{3+}\right]=\mathrm{Fe}_{\text {total }} /(1+\alpha) }
\end{aligned}
$$

The half-reaction for titrant is more complicated:

$$
\begin{aligned}
& \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightleftharpoons 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{E} & =\mathrm{E}^{\circ}-\frac{0.05916}{6} \log \frac{\left[\mathrm{Cr}^{3+}\right]^{2}}{\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right]\left[\mathrm{H}^{+}\right]^{14}} \quad \mathrm{E}^{\circ}=1.36 \mathrm{~V} \\
\Rightarrow & \tau \equiv \frac{\left[\mathrm{Cr}^{3+}\right]^{2}}{\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right]}=10\{6(1.36-\mathrm{E}) / 0.05916-14 \mathrm{pH}\} \Rightarrow\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right]=\frac{1}{\tau}\left[\mathrm{Cr}^{3+}\right]^{2}
\end{aligned}
$$

The mass balance for chromium is

$$
\begin{align*}
\mathrm{Cr}_{\text {total }}= & {\left[\mathrm{Cr}^{3+}\right]+2\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right]=\left[\mathrm{Cr}^{3+}\right]+\frac{2}{\tau}\left[\mathrm{Cr}^{3+}\right]^{2} } \tag{A}\\
& \Rightarrow \mathrm{Cr}_{\text {total }}=\left[\mathrm{Cr}^{3+}\right]\left(\frac{\tau+2\left[\mathrm{Cr}^{3+}\right]}{\tau}\right) \\
& \Rightarrow\left[\mathrm{Cr}^{3+}\right]=\mathrm{Cr}_{\text {total }}\left(\frac{\tau}{\tau+2\left[\mathrm{Cr}^{3+}\right]}\right) \tag{B}
\end{align*}
$$

Quadratic equation A can be solved for $\left[\mathrm{Cr}^{3+}\right]$ and we find the positive root to be

$$
\begin{equation*}
\left[\mathrm{Cr}^{3+}\right]=\frac{-\frac{\tau}{2}+\sqrt{\frac{\tau^{2}}{4}+2 \tau \mathrm{Cr}_{\text {total }}}}{2} \tag{C}
\end{equation*}
$$

Since Fe^{3+} and Cr^{3+} are created in $6: 2$ proportions, we can say that

$$
3\left[\mathrm{Cr}^{3+}\right]=\left[\mathrm{Fe}^{3+}\right]
$$

Substituting $\left[\mathrm{Cr}^{3+}\right]$ from Equation B and $\left[\mathrm{Fe}^{3+}\right]=\mathrm{Fe}_{\text {total }} /(1+\alpha)$ gives

$$
3 \mathrm{Cr}_{\text {total }}\left(\frac{\tau}{\tau+2\left[\mathrm{Cr}^{3+}\right]}\right)=\frac{\mathrm{Fe}_{\text {total }}}{(1+\alpha)}
$$

The fraction of titration for the reaction is $\phi=3 \mathrm{Cr}_{\text {total }} / \mathrm{Fe}_{\text {total }}$. The factor of 3 guarantees that $\phi=1$ at the equivalence point. Rearranging the equation above gives

$$
\phi=\frac{3 \mathrm{Cr}_{\text {total }}}{\mathrm{Fe}_{\text {total }}}=\frac{\tau+2\left[\mathrm{Cr}^{3+}\right]}{\tau(1+\alpha)}
$$

Replacing $\left[\mathrm{Cr}^{3+}\right]$ by its value from Equation C gives what we seek:

$$
\begin{equation*}
\phi=\frac{3 \mathrm{Cr}_{\text {total }}}{\mathrm{Fe}_{\text {total }}}=\frac{\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{2 \mathrm{Cr}_{\text {total }}}{\tau}}}{1+\alpha} \tag{D}
\end{equation*}
$$

But the value of ϕ depends on the total concentration of chromium at each point. We can express the total concentration of chromium in terms of ϕ as follows:

$$
\begin{equation*}
\mathrm{Cr}_{\text {total }}=\frac{\mathrm{mmol} \text { of } \mathrm{Cr}}{\mathrm{~mL} \text { of solution }}=\frac{\mathrm{V}_{\mathrm{Cr}} \mathrm{C}_{\mathrm{Cr}}}{\mathrm{~V}_{\mathrm{Cr}}+\mathrm{V}_{\mathrm{Fe}}^{\circ}}=\frac{\phi \mathrm{V}_{\mathrm{e}} \mathrm{C}_{\mathrm{Cr}}}{\phi \mathrm{~V}_{\mathrm{e}}+\mathrm{V}_{\mathrm{Fe}}^{\circ}} \tag{E}
\end{equation*}
$$

where C_{Cr} is the concentration of chromium $\left(=2\left[\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right]\right)$ in titrant and $\mathrm{V}_{\mathrm{Fe}}^{\circ}$ is the initial concentration of Fe^{2+} analyte. Substituting $\mathrm{Cr}_{\text {total }}$ from Equation E into Equation D gives the master equation for the titration curve of Fe^{2+} titrated with $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$:

$$
\begin{equation*}
\phi=\frac{3 \mathrm{Cr}_{\text {total }}}{\mathrm{Fe}_{\text {total }}}=\frac{\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{2 \phi \mathrm{~V}_{\mathrm{e}} \mathrm{C}_{\mathrm{Cr}}}{\tau \phi \mathrm{~V}_{\mathrm{e}}+\tau \mathrm{V}_{\mathrm{Fe}}^{\circ}}}}{1+\alpha} \tag{F}
\end{equation*}
$$

To implement Equation F on a spreadsheet, the constants C_{Cr} and $\mathrm{V}_{\mathrm{Fe}}^{\circ}$ are added to column A. A value of potential (vs S.H.E.) is inserted in column B and values of τ and α are computed in columns C and D . Equation F is used to compute ϕ in column E. In this formula, ϕ is defined in terms of itself. We call this a circular definition. The spreadsheet uses successive approximations to find a solution. The end of the section "Spreadsheet for Precipitation Titration of a Mixture" in this supplement explains how to handle a circular definition in a spreadsheet.

Consider the titration of 120.0 mL of $0.0100 \mathrm{M} \mathrm{Fe}^{2+}$ (buffered to pH 1.00) with $0.020 \mathrm{M} \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ monitored by Pt and saturated $\mathrm{Ag} \mid \mathrm{AgCl}$ electrodes. Use a spreadsheet to prepare a graph of the titration curve. Report the potential at the following volumes of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}: 0.100,2.00,4.00,6.00,8.00,9.00,9.90,10.00$, $10.10,11.00,12.00 \mathrm{~mL}$.

Solutions to Exercises

A. (a) Titration reaction: $\mathrm{Cr}^{2+}+\mathrm{Fe}^{3+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{Cr}^{3+}$

Titrant: $\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}$
$\mathrm{E}^{\circ}=0.767 \mathrm{~V}$
Analyte: $\mathrm{Cr}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Cr}^{2+}$
$\mathrm{E}^{\circ}=-0.42 \mathrm{~V}$
$\tau=10^{(0.767-\mathrm{E}) / 0.05916}$
$\alpha=10^{(-0.42-E) / 0.05916}$
$\phi=\frac{(1+\tau)}{\tau(1+\alpha)}$
$\mathrm{V}_{\mathrm{e}}=50.0 \mathrm{~mL}$
Spreadsheet for titration of Cr^{2+} with Fe^{3+}

	A	B	C	D	E	F	G
1	$\mathrm{E}^{\circ}(\mathrm{T})=$	E(vsS.H.E.)	Tau	Alpha	Phi	E (vsS.C.E.)	Volume (mL)
2	0.767	-0.538	$1.15 \mathrm{E}+22$	$9.88 \mathrm{E}+01$	0.01002	-0.779	0.501
3	$\mathrm{E}^{\circ}(\mathrm{A})=$	-0.420	$1.16 \mathrm{E}+20$	$1.00 \mathrm{E}+00$	0.50000	-0.661	25.000
4	-0.42	-0.302	$1.17 \mathrm{E}+18$	$1.01 \mathrm{E}-02$	0.98998	-0.543	49.499
5	Nernst $=$	-0.242	$1.14 \mathrm{E}+17$	$9.80 \mathrm{E}-04$	0.99902	-0.483	49.951
6	0.05916	0.174	$1.06 \mathrm{E}+10$	$9.11 \mathrm{E}-11$	1.00000	-0.067	50.000
7	$\mathrm{Ve}=$	0.649	$9.88 \mathrm{E}+01$	8.52E-19	1.01013	0.408	50.506
8	50	0.708	$9.94 \mathrm{E}+00$	$8.57 \mathrm{E}-20$	1.10062	0.467	55.031
9		0.767	$1.00 \mathrm{E}+00$	$8.63 \mathrm{E}-21$	2.00000	0.526	100.000
10							
11	$\mathrm{C} 2=10^{\wedge}((\$ \mathrm{~A}$ 2-B2)/\$A\$6)			$\mathrm{E} 2=(1+\mathrm{C} 2) /(\mathrm{C} 2 *(1+\mathrm{D} 2))$			
12	$\mathrm{D} 2=10^{\wedge}((\$ \mathrm{~A} 4-\mathrm{B} 2) / \$ \mathrm{~A} \$ 6)$			F2 = B2-0.241		$\mathrm{G} 2=\$ \mathrm{~A} \$ 8 * \mathrm{E} 2$	

(b) Titration reaction: $5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$

Titrant: $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}^{\circ}=1.507 \mathrm{~V}$
Analyte: $\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}$
$\tau=10\{[5(1.507-\mathrm{E}) / 0.05916]-8 \mathrm{pH}\}$
$\alpha=10^{(0.68-E) / 0.05916}$
$\phi=\frac{(1+\tau)}{\tau(1+\alpha)}$
$\mathrm{V}_{\mathrm{e}}=10.0 \mathrm{~mL}$

Spreadsheet for titration of Fe^{2+} with permanganate

	A	B	C	D	E	F	G
1	$\mathrm{E}^{\circ}(\mathrm{T})=$	E(vs S.H.E.)	Tau	Alpha	Phi	E (vs S.C.E.)	Volume (mL)
2	1.507	0.562	$7.38 \mathrm{E}+71$	$9.88 \mathrm{E}+01$	0.01002	0.321	0.100
3	$\mathrm{E}^{\circ}(\mathrm{A})=$	0.680	$7.86 \mathrm{E}+61$	$1.00 \mathrm{E}+00$	0.50000	0.439	5.000
4	0.68	0.798	$8.36 \mathrm{E}+51$	$1.01 \mathrm{E}-02$	0.98998	0.557	9.900
5	Nernst $=$	0.858	$7.10 \mathrm{E}+46$	$9.80 \mathrm{E}-04$	0.99902	0.617	9.990
6	0.05916	1.290	$2.19 \mathrm{E}+10$	$4.89 \mathrm{E}-11$	1.00000	1.049	10.000
7	$\mathrm{Ve}=$	1.389	$9.40 \mathrm{E}+01$	$1.04 \mathrm{E}-12$	1.01064	1.148	10.106
8	10	1.400	$1.10 \mathrm{E}+01$	$6.75 \mathrm{E}-13$	1.09052	1.159	10.905
9	$\mathrm{pH}=$	1.412	$1.07 \mathrm{E}+00$	$4.23 \mathrm{E}-13$	1.93525	1.171	19.352
10	1						
11					$\mathrm{E} 2=(1+\mathrm{C} 2) /(\mathrm{C} 2 *(1+\mathrm{D} 2))$		
12	$\mathrm{D} 2=10^{\wedge}((\$ \mathrm{~A} 4-\mathrm{B} 2) / \$ \mathrm{~A}$ / 6$)$			F2 = B2-0.241		$\mathrm{G} 2=\$ \mathrm{~A} \$ 8^{*} \mathrm{E} 2$	

(c) Titration reaction: ascorbic acid $+2 \mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ dehydro. $+2 \mathrm{Fe}^{2+}+2 \mathrm{H}^{+}$

Titrant: dehydro. $+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons$ ascorbic acid $+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}^{\circ}=0.390 \mathrm{~V}$
Analyte: $\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}$
$\mathrm{E}^{\circ}=0.732 \mathrm{~V}$
$\tau=10\{[2(0.390-\mathrm{E}) / 0.05916]-2 \mathrm{pH}\} \quad \alpha=10^{(0.732-\mathrm{E}) / 0.05916}$
$\phi=\frac{\alpha(1+\tau)}{(1+\alpha)}$
$\mathrm{V}_{\mathrm{e}}=30.0_{6} \mathrm{~mL}$
Spreadsheet for titration of Fe^{3+} with ascorbic acid

	A	B	C	D	E	F	G
1	$\mathrm{E}^{\circ}(\mathrm{T})=$	E(vsS.H.E.)	Tau	Alpha	Phi	E (vsS.C.E.)	Volume (mL)
2	0.39	0.850	$2.81 \mathrm{E}-18$	$1.01 \mathrm{E}-02$	0.01002	0.609	0.301
3	$\mathrm{E}^{\circ}(\mathrm{A})=$	0.732	$2.74 \mathrm{E}-14$	$1.00 \mathrm{E}+00$	0.50000	0.491	15.030
4	0.732	0.614	$2.67 \mathrm{E}-10$	$9.88 \mathrm{E}+01$	0.98998	0.373	29.759
5	Nernst $=$	0.555	$2.64 \mathrm{E}-08$	$9.81 \mathrm{E}+02$	0.99898	0.314	30.029
6	0.05916	0.464	$3.15 \mathrm{E}-05$	$3.39 \mathrm{E}+04$	1.00000	0.223	30.060
7	$\mathrm{Ve}=$	0.390	$1.00 \mathrm{E}-02$	$6.04 \mathrm{E}+05$	1.01000	0.149	30.361
8	30.06	0.360	$1.03 \mathrm{E}-01$	$1.94 \mathrm{E}+06$	1.10332	0.119	33.166
9	pH =	0.331	$9.88 \mathrm{E}-01$	$6.00 \mathrm{E}+06$	1.98762	0.090	59.748
10	1						
11	$\mathrm{C} 2=10^{\wedge}\left(2^{*}(\$ \mathrm{~A} 2-\mathrm{B} 2) / \$ \mathrm{~A} \$ 6-2 * \$ \mathrm{~A}\right.$ \$10)				$\mathrm{E} 2=\mathrm{D} 2 *(1+\mathrm{C} 2) /(1+\mathrm{D} 2)$		
12	$\mathrm{D} 2=10^{\wedge}((\$ \mathrm{~A} 4-\mathrm{B} 2) / \$ \mathrm{~A} \$ 6)$			F2 = B2-0.241		$\mathrm{G} 2=\$ \mathrm{~A} \$ 8^{*} \mathrm{E} 2$	

(d) Titration reaction: $\mathrm{UO}_{2}^{2+}+\mathrm{Sn}^{2+}+4 \mathrm{H}^{+} \rightarrow \mathrm{U}^{4+}+\mathrm{Sn}^{4+}+2 \mathrm{H}_{2} \mathrm{O}$

Titrant: $\mathrm{Sn}^{4+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Sn}^{2+}$ $\mathrm{E}^{\circ}=0.139 \mathrm{~V}$
$\mathrm{E}^{\circ}=0.273 \mathrm{~V}$
Analyte: $\mathrm{UO}_{2}^{2+}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{U}^{4+}+2 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{E}^{\circ}=0.273 \mathrm{~V}$
$\tau=10^{[2(0.139-E) / 0.05916]}$
$\alpha=10^{\{2(0.273-E) / 0.05916-4 \mathrm{pH}\}}$
$\phi=\frac{\alpha(1+\tau)}{(1+\alpha)}$
$\mathrm{V}_{\mathrm{e}}=25.0 \mathrm{~mL}$

Spreadsheet for titration of UO_{2}^{2+} with Sn^{2+}

	A	B	C	D	E	F	G
1	$\mathrm{E}^{\circ}(\mathrm{T})=$	E(vsS.H.E.)	Tau	Alpha	Phi	E (vs S.C.E.)	Volume (mL)
2	0.139	0.332	$2.99 \mathrm{E}-07$	$1.01 \mathrm{E}-02$	0.01002	0.091	0.251
3	$\mathrm{E}^{\circ}(\mathrm{A})=$	0.301	$3.34 \mathrm{E}-06$	$1.13 \mathrm{E}-01$	0.10160	0.060	2.540
4	0.273	0.216	$2.49 \mathrm{E}-03$	$8.45 \mathrm{E}+01$	0.99077	-0.025	24.769
5	Nernst $=$	0.207	$5.03 \mathrm{E}-03$	$1.70 \mathrm{E}+02$	0.99916	-0.034	24.979
6	0.05916	0.206	$5.43 \mathrm{E}-03$	$1.84 \mathrm{E}+02$	1.00000	-0.035	25.000
7	$\mathrm{Ve}=$	0.195	$1.28 \mathrm{E}-02$	$4.33 \mathrm{E}+02$	1.01046	-0.046	25.261
8	25	0.169	$9.68 \mathrm{E}-02$	$3.28 \mathrm{E}+03$	1.09645	-0.072	27.411
9	$\mathrm{pH}=$	0.139	$1.00 \mathrm{E}+00$	$3.39 \mathrm{E}+04$	1.99994	-0.102	49.999
10	0						
11	$\mathrm{C} 2=10^{\wedge}\left(2 *(\$ \mathrm{~A} 2-\mathrm{B} 2) /\right.$ A ${ }^{\text {d }} 6-4 * \$ \mathrm{~A}$ (10)				$\mathrm{E} 2=\mathrm{D} 2 *(1+\mathrm{C} 2) /(1+\mathrm{D} 2)$		
12	$\mathrm{D} 2=10^{\wedge}(2 *(\$ \mathrm{~A} 4-\mathrm{B} 2) / \$ \mathrm{~A} \$ 6)$			F2 = B2-0.241		$\mathrm{G} 2=\$ \mathrm{~A} \$ 8^{*} \mathrm{E} 2$	

B. (a) Titration reaction: $\mathrm{Cr}^{2+}+\mathrm{Fe}^{3+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{Cr}^{3+}$
$\begin{array}{lr}\text { Titrant: } \mathrm{Cr}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Cr}^{2+} & \mathrm{E}^{\circ}=-0.42 \mathrm{~V} \\ \text { Analyte: } \mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+} & \mathrm{E}^{\circ}=0.767 \mathrm{~V} \\ \tau=10^{(-0.42-\mathrm{E}) / 0.05916} & \alpha=10^{(0.767-\mathrm{E}) / 0.05916} \\ \phi=\frac{\alpha(1+\tau)}{(1+\alpha)} & \mathrm{V}_{\mathrm{e}}=50.0 \mathrm{~mL}\end{array}$
Spreadsheet for titration of Fe^{3+} with Cr^{2+}

	A	B	C	D	E	F	G
1	$\mathrm{E}^{\circ}(\mathrm{T})=$	E(vsS.H.E.)	Tau	Alpha	Phi	E(vs AgAgCl)	Volume (mL)
2	-0.42	0.885	$8.73 \mathrm{E}-23$	$1.01 \mathrm{E}-02$	0.01002	0.688	0.501
3	$\mathrm{E}^{\circ}(\mathrm{A})=$	0.767	$8.63 \mathrm{E}-21$	$1.00 \mathrm{E}+00$	0.50000	0.570	25.000
4	0.767	0.649	$8.52 \mathrm{E}-19$	$9.88 \mathrm{E}+01$	0.98998	0.452	49.499
5	Nernst $=$	0.590	8.47E-18	$9.81 \mathrm{E}+02$	0.99898	0.393	49.949
6	0.05916	0.174	$9.11 \mathrm{E}-11$	$1.06 \mathrm{E}+10$	1.00000	-0.023	50.000
7	$\mathrm{Ve}=$	-0.302	$1.01 \mathrm{E}-02$	$1.17 \mathrm{E}+18$	1.01013	-0.499	50.506
8	50	-0.361	$1.01 \mathrm{E}-01$	$1.17 \mathrm{E}+19$	1.10062	-0.558	55.031
9		-0.420	$1.00 \mathrm{E}+00$	$1.16 \mathrm{E}+20$	2.00000	-0.617	100.000
10							
11	$\mathrm{C} 2=10^{\wedge}((\$ \mathrm{~A} 2-\mathrm{B} 2) / \$ \mathrm{~A} \$ 6)$			$\mathrm{E} 2=\mathrm{D} 2 *(1+\mathrm{C} 2) /(1+\mathrm{D} 2)$			
12	$\mathrm{D} 2=10^{\wedge}((\$ \mathrm{~A} 4-\mathrm{B} 2) / \$ \mathrm{~A} \$ 6)$			F2 = B2-0.197		$\mathrm{G} 2=\$ \mathrm{~A} \$ 8^{*} \mathrm{E} 2$	

(b) Titration reaction: $5 \mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+} \rightarrow 5 \mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$

Titrant: $\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}$

$$
\mathrm{E}^{\circ}=0.68 \mathrm{~V}
$$

Analyte: $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{E}^{\circ}=1.507 \mathrm{~V}$
$\begin{array}{ll}\tau=10^{(0.68-\mathrm{E}) / 0.05916} & \alpha=10^{\{[5(1.507-\mathrm{E}) / 0.05916]-8 \mathrm{pH}\}} \\ \phi=\frac{\alpha(1+\tau)}{(1+\alpha)} & \mathrm{V}_{\mathrm{e}}=50.0 \mathrm{~mL}\end{array}$

Spreadsheet for titration of permanganate with Fe^{2+}

	A	B	C	D	E	F	G
1	$\mathrm{E}^{\circ}(\mathrm{T})=$	E(vs S.H.E.)	Tau	Alpha	Phi	E(vs AgAgCl)	Volume (mL)
2	0.68	1.559	$1.39 \mathrm{E}-15$	$1.01 \mathrm{E}-02$	0.01002	1.362	0.501
3	$\mathrm{E}^{\circ}(\mathrm{A})=$	1.535	$3.53 \mathrm{E}-15$	$1.08 \mathrm{E}+00$	0.51930	1.338	25.965
4	1.507	1.512	$8.64 \mathrm{E}-15$	$9.49 \mathrm{E}+01$	0.98958	1.315	49.479
5	Nernst $=$	1.499	$1.43 \mathrm{E}-14$	$1.19 \mathrm{E}+03$	0.99916	1.302	49.958
6	0.05916	1.390	$9.97 \mathrm{E}-13$	$1.94 \mathrm{E}+12$	1.00000	1.193	50.000
7	$\mathrm{Ve}=$	0.798	$1.01 \mathrm{E}-02$	$2.10 \mathrm{E}+62$	1.01013	0.601	50.506
8	50	0.739	$1.01 \mathrm{E}-01$	$2.04 \mathrm{E}+67$	1.10062	0.542	55.031
9	$\mathrm{pH}=$	0.680	$1.00 \mathrm{E}+00$	$1.97 \mathrm{E}+72$	2.00000	0.483	100.000
10	-0.3						
11	$\mathrm{C} 2=10^{\wedge}((\$ \mathrm{~A} 2-\mathrm{B} 2) / \$ \mathrm{~A} \$ 6)$			F2 = B2-0.197		$\mathrm{G} 2=\$ \mathrm{~A} \$ 8 * \mathrm{E} 2$	
12	$\mathrm{D} 2=10^{\wedge}\left(5 *(\$ \mathrm{~A} 4-\mathrm{B} 2) / \$ \mathrm{~A} \$ 6-8^{*} \$ \mathrm{~A} \$ 10\right)$				$\mathrm{E} 2=\mathrm{D} 2 *(1+\mathrm{C} 2) /(1+\mathrm{D} 2)$		

(c) Titration reaction: dehydro. $+2 \mathrm{Fe}^{2+}+2 \mathrm{H}^{+} \rightarrow$ ascorbic acid $+2 \mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O}$

Titrant: dehydro. $+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons$ ascorbic acid $+\mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}^{\circ}=0.390 \mathrm{~V}$

$$
\text { Analyte: } \mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+} \quad \mathrm{E}^{\circ}=0.732 \mathrm{~V}
$$

$\tau=10\{[2(0.390-\mathrm{E}) / 0.05916]-2 \mathrm{pH}\} \quad \alpha=10^{(0.732-\mathrm{E}) / 0.05916}$
$\phi=\frac{\alpha(1+\tau)}{(1+\alpha)} \quad \mathrm{V}_{\mathrm{e}}=30.0_{6} \mathrm{~mL}$
Spreadsheet for titration of Fe^{3+} with ascorbic acid

	A	B	C	D	E	F	G
1	$\mathrm{E}^{\circ}(\mathrm{T})=$	E(vs S.H.E.)	Tau	Alpha	Phi	E(vs AgAgCl)	Volume (mL)
2	0.39	0.850	$2.81 \mathrm{E}-16$	$1.01 \mathrm{E}-02$	0.01002	0.653	0.301
3	$\mathrm{E}^{\circ}(\mathrm{A})=$	0.732	$2.74 \mathrm{E}-12$	$1.00 \mathrm{E}+00$	0.50000	0.535	15.030
4	0.732	0.614	$2.67 \mathrm{E}-08$	$9.88 \mathrm{E}+01$	0.98998	0.417	29.759
5	Nernst $=$	0.554	$2.86 \mathrm{E}-06$	$1.02 \mathrm{E}+03$	0.99902	0.357	30.031
6	0.05916	0.504	$1.40 \mathrm{E}-04$	$7.14 \mathrm{E}+03$	1.00000	0.307	30.060
7	$\mathrm{Ve}=$	0.449	$1.01 \mathrm{E}-02$	$6.08 \mathrm{E}+04$	1.01011	0.252	30.364
8	30.06	0.420	$9.68 \mathrm{E}-02$	$1.88 \mathrm{E}+05$	1.09678	0.223	32.969
9	$\mathrm{pH}=$	0.390	$1.00 \mathrm{E}+00$	$6.04 \mathrm{E}+05$	2.00000	0.149	60.120
10	0						
11					$\mathrm{E} 2=\mathrm{D} 2 *(1+\mathrm{C} 2) /(1+\mathrm{D} 2)$		
12	$\mathrm{D} 2=10^{\wedge}((\$ \mathrm{~A} \$ 4-\mathrm{B} 2) / \$ \mathrm{~A} \$ 6)$			F2 = B2-0.197		$\mathrm{G} 2=\$ \mathrm{~A} \$ 8^{*} \mathrm{E} 2$	

(d) Titration reaction: $\mathrm{UO}_{2}^{2+}+\mathrm{Sn}^{2+}+4 \mathrm{H}^{+} \rightarrow \mathrm{U}^{4+}+\mathrm{Sn}^{4+}+2 \mathrm{H}_{2} \mathrm{O}$

Titrant: $\mathrm{UO}_{2}^{2+}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{U}^{4+}+2 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}^{\circ}=0.273 \mathrm{~V}$
Analyte: $\mathrm{Sn}^{4+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Sn}^{2+} \quad \mathrm{E}^{\circ}=0.139 \mathrm{~V}$

$$
\begin{array}{ll}
\tau=10^{\{2(0.273-\mathrm{E}) / 0.05916-4 \mathrm{pH}\}} & \alpha=10^{[2(0.139-\mathrm{E}) / 0.05916]} \\
\phi=\frac{(1+\tau)}{\tau(1+\alpha)} & \mathrm{V}_{\mathrm{e}}=25.0 \mathrm{~mL}
\end{array}
$$

Spreadsheet for titration of Sn^{2+} with UO_{2}^{2+}

	A	B	C	D	E	F	G
1	$\mathrm{E}^{\circ}(\mathrm{T})=$	E(vs S.H.E.)	Tau	Alpha	Phi	E(vs AgAgCl)	Volume (mL)
2	0.273	0.080	$3.35 \mathrm{E}+06$	$9.88 \mathrm{E}+01$	0.01002	-0.117	0.251
3	$\mathrm{E}^{\circ}(\mathrm{A})=$	0.139	$3.39 \mathrm{E}+04$	$1.00 \mathrm{E}+00$	0.50001	-0.058	12.500
4	0.139	0.195	$4.33 \mathrm{E}+02$	$1.28 \mathrm{E}-02$	0.98965	-0.002	24.741
5	Nernst $=$	0.205	$1.99 \mathrm{E}+02$	$5.87 \mathrm{E}-03$	0.99916	0.008	24.979
6	0.05916	0.206	$1.84 \mathrm{E}+02$	$5.43 \mathrm{E}-03$	1.00000	0.009	25.000
7	$\mathrm{Ve}=$	0.217	$7.82 \mathrm{E}+01$	$2.31 \mathrm{E}-03$	1.01046	0.020	25.261
8	25	0.243	$1.03 \mathrm{E}+01$	$3.05 \mathrm{E}-04$	1.09645	0.046	27.411
9	$\mathrm{pH}=$	0.273	$1.00 \mathrm{E}+00$	$2.95 \mathrm{E}-05$	1.99994	0.076	49.999
10	0						
11	$\mathrm{C} 2=10^{\wedge}\left(2^{*}(\$ \mathrm{~A} 2-\mathrm{B} 2) /\right.$ A ${ }^{\text {d }} 6-4 * \$ \mathrm{~A}$ \$10)				$\mathrm{E} 2=(1+\mathrm{C} 2) /(\mathrm{C} 2 *(1+\mathrm{D} 2))$		
12	$\mathrm{D} 2=10^{\wedge}(2 *(\$ \mathrm{~A} 4-\mathrm{B} 2) /$ / A\$6)			$\mathrm{F} 2=\mathrm{B} 2-0.197$		$\mathrm{G} 2=\$ \mathrm{~A} \$ 8 * \mathrm{E} 2$	

C.

D. (a) Balanced reaction: $\mathrm{ClO}_{3}^{-}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{ClO}_{3}^{-}+6 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightleftharpoons \frac{1}{2} \mathrm{Cl}_{2}+3 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{G}_{1}^{\circ}=-5 \mathrm{~F}(1.458)$ $\frac{1}{2} \mathrm{Cl}_{2}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Cl}^{-} \quad \Delta \mathrm{G}_{2}^{\circ}=-1 \mathrm{~F}(1.360)$
$\mathrm{ClO}_{3}^{-}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O} \Delta \mathrm{G}_{3}^{\circ}=\Delta \mathrm{G}_{1}^{\circ}+\Delta \mathrm{G}_{2}^{\circ}=-6 \mathrm{FE}_{3}^{\circ}$
$-6 \mathrm{FE}_{3}^{\circ}=-5 \mathrm{~F}(1.458)-\mathrm{F}(1.360) \Rightarrow \mathrm{E}_{3}^{\circ}=1.442 \mathrm{~V}$
(c) Titration reaction: $\mathrm{ClO}_{3}^{-}+6 \mathrm{H}^{+}+6 \mathrm{Cr}^{2+} \rightleftharpoons \mathrm{Cl}^{-}+6 \mathrm{Cr}^{3+}+3 \mathrm{H}_{2} \mathrm{O}$

Titrant: $\mathrm{ClO}_{3}^{-}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cl}^{-}+3 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}^{\circ}=1.442 \mathrm{~V}$
Analyte: $\mathrm{Cr}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Cr}^{2+} \quad \mathrm{E}^{\circ}=-0.42 \mathrm{~V}$

$$
\begin{aligned}
& \tau=10\{[6(1.442-\mathrm{E}) / 0.05916]-6 \mathrm{pH}\} \\
& \phi=\frac{(1+\tau)}{\tau(1+\alpha)}
\end{aligned}
$$

E. (a) Spreadsheet for titration of $\mathrm{Tl}^{+}+\mathrm{Sn}^{2+}$ with iodate

	A	B	C	D	E	F	G	H
1	$\mathrm{E}^{\circ}(\mathrm{T})=$	E(SHE)	Tau	Alpha1	Alpha2	Phi	E(SCE)	Volume
2	1.24	0.134	$6.0 \mathrm{E}+74$	$1.5 \mathrm{E}+00$	$3.2 \mathrm{E}+21$	0.4039	-0.107	20.195
3	$\mathrm{E}^{\circ}(\mathrm{A} 1)=$	0.139	$2.8 \mathrm{E}+74$	$1.0 \mathrm{E}+00$	$2.1 \mathrm{E}+21$	0.5000	-0.102	25.000
4	0.139	0.454	$1.4 \mathrm{E}+53$	$2.2 \mathrm{E}-11$	$4.8 \mathrm{E}+10$	1.0000	0.213	50.000
5	$\mathrm{E}^{\circ}(\mathrm{A} 2)=$	0.752	$9.9 \mathrm{E}+32$	$1.9 \mathrm{E}-21$	$4.1 \mathrm{E}+00$	1.1976	0.511	59.882
6	0.77	0.770	$6.0 \mathrm{E}+31$	$4.7 \mathrm{E}-22$	$1.0 \mathrm{E}+00$	1.5000	0.529	75.000
7	Nernst $=$	1.080	$6.6 \mathrm{E}+10$	$1.5 \mathrm{E}-32$	$3.3 \mathrm{E}-11$	2.0000	0.839	100.000
8	0.05916	1.225	$1.0 \mathrm{E}+01$	$1.9 \mathrm{E}-37$	4.1E-16	2.1936	0.984	109.678
9	$\mathrm{Ve}=$							
10	50							
11	$\mathrm{pCl}=$		$\mathrm{C} 2=10^{\wedge}\left(4^{*}(\$ \mathrm{~A} \$ 2-\mathrm{B} 2) / \$ \mathrm{~A} \$ 8-2 * \$ \mathrm{~A}\right.$ 12-6*\$A\$14)					
12	0		$\mathrm{D} 2=10^{\wedge}(2 *(\$ \mathrm{~A} 4-\mathrm{B} 2) / \$ \mathrm{~A} \$ 8)$					
13	$\mathrm{pH}=$		$\mathrm{E} 2=10^{\wedge}\left(2^{*}(\$ \mathrm{~A}\right.$ ($6-\mathrm{B} 2) /$ / A\$88)					
14	0		$\mathrm{F} 2=((1+\mathrm{C} 2) / \mathrm{C} 2) *((1 /(1+\mathrm{D} 2))+((\$ \mathrm{~A} 16 / \$ \mathrm{~A} \$ 18) /(1+\mathrm{E} 2))$)					
15	$\mathrm{Tl}($ total $)=$		$\mathrm{G} 2=\mathrm{B} 2-0.241$					
16	0.01		$\mathrm{H} 2=\$ \mathrm{~A} \$ 10 * \mathrm{~F} 2$					
17	$\mathrm{Sn}($ total $)=$							
18	0.01							

(b) Titration of Tl^{+}and Sn^{2+} with iodate

	A	B	C	D	E	F	G	H
1	$\mathrm{E}^{\circ}(\mathrm{T})=$	E(S.H.E.)	Tau	Alpha1	Alpha2	Phi	E(S.C.E.)	Volume
2	1.24	0.126	$2.1 \mathrm{E}+75$	$2.8 \mathrm{E}+00$	$5.9 \mathrm{E}+21$	0.27	-0.115	19.995
3	$\mathrm{E}^{\circ}(\mathrm{A} 1)=$	0.139	$2.8 \mathrm{E}+74$	$1.0 \mathrm{E}+00$	$2.1 \mathrm{E}+21$	0.50	-0.102	37.500
4	0.139	0.194	$5.3 \mathrm{E}+70$	$1.4 \mathrm{E}-02$	$3.0 \mathrm{E}+19$	0.99	-0.047	73.977
5	$\mathrm{E}^{\circ}(\mathrm{A} 2)=$	0.462	$4.0 \mathrm{E}+52$	$1.2 \mathrm{E}-11$	$2.6 \mathrm{E}+10$	1.00	0.221	75.000
6	0.77	0.729	$3.6 \mathrm{E}+34$	$1.1 \mathrm{E}-20$	$2.4 \mathrm{E}+01$	1.01	0.488	75.987
7	Nernst $=$	0.770	$6.0 \mathrm{E}+31$	$4.7 \mathrm{E}-22$	$1.0 \mathrm{E}+00$	1.17	0.529	87.500
8	0.05916	1.077	$1.0 \mathrm{E}+11$	$1.9 \mathrm{E}-32$	$4.2 \mathrm{E}-11$	1.33	0.836	100.000
9	$\mathrm{Ve}=$	1.226	$8.8 \mathrm{E}+00$	$1.8 \mathrm{E}-37$	$3.8 \mathrm{E}-16$	1.48	0.985	111.309
10	75							
11	$\mathrm{pCl}=$							
12	0		$\mathrm{C} 2=10^{\wedge}(4 *(\$ \mathrm{~A} 2-\mathrm{B} 2) / \$ \mathrm{~A} \$ 8-2 * \$ \mathrm{~A}$ (12-6*\$A\$14)					
13	$\mathrm{pH}=$		$\mathrm{D} 2=10^{\wedge}(2 *(\$ \mathrm{~A} 4-\mathrm{B} 2) / \$ \mathrm{~A} \$ 8)$					
14	0		$\mathrm{E} 2=10^{\wedge}(2 *(\$ \mathrm{~A} / 6-\mathrm{B} 2) /$ / A\$ 8)					
15	Tl(total)=		$\mathrm{F} 2=((1+\mathrm{C} 2) / \mathrm{C} 2) *((1 /(1+\mathrm{D} 2))+((\$ \mathrm{~A} \$ 16 / \$ \mathrm{~A} \$ 18) /(1+\mathrm{E} 2))$)					
16	0.005		$\mathrm{G} 2=\mathrm{B} 2-0.241$					
17	Sn(total) $=$		$\mathrm{H} 2=\$ \mathrm{~A} \$ 10 * \mathrm{~F} 2$					
18	0.015							

F. Titrant: $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightleftharpoons \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}^{\circ}=1.507 \mathrm{~V}$

$$
\tau=10\{[5(1.507-\mathrm{E}) / 0.05916]-8 \mathrm{pH}\}
$$

First analyte: $\mathrm{UO}_{2}^{2+}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{U}^{4+}+2 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{E}^{\circ}=0.273 \mathrm{~V}$

$$
\alpha_{1}=10\{2(0.273-\mathrm{E}) / 0.05916-4 \mathrm{pH}\}
$$

Second analyte: $\mathrm{Fe}^{3+}+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+} \mathrm{E}^{\circ}=0.767 \mathrm{~V}$
$\alpha_{2}=10^{(0.767-E) / 0.05916}$
(a) First reaction: $2 \mathrm{MnO}_{4}^{-}+5 \mathrm{U}^{4+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{UO}_{2}^{2+}+4 \mathrm{H}^{+}$

Second reaction: $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{Fe}^{2+} \rightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+4 \mathrm{H}_{2} \mathrm{O}$
(b) $\left[\mathrm{U}^{4+}\right]=\frac{5}{2}\left(\frac{\mathrm{mmol} \mathrm{MnO}_{4}^{-}}{25.0 \mathrm{~mL}}\right)=\frac{5}{2}\left(\frac{12.73 \mathrm{~mL} \times 0.00987 \mathrm{M}}{25.0 \mathrm{~mL}}\right)=0.01256 \mathrm{M}$ $\left[\mathrm{Fe}^{2+}\right]=5\left(\frac{\mathrm{mmol} \mathrm{MnO}_{4}^{-}}{25.0 \mathrm{~mL}}\right)=5\left(\frac{(31.21-12.73) \mathrm{mL} \times 0.00987 \mathrm{M}}{25.0 \mathrm{~mL}}\right)=0.03648 \mathrm{M}$
(c) From the stoichiometry of the two reactions, we know that

$$
\begin{aligned}
& {\left[\mathrm{Mn}^{2+}\right]=\frac{2}{5}\left[\mathrm{UO}_{2}^{2+}\right]+\frac{1}{5}\left[\mathrm{Fe}^{3+}\right]} \\
& \frac{\tau \mathrm{Mn}_{\text {total }}}{1+\tau}=\frac{2}{5} \frac{\mathrm{U}_{\text {total }}}{1+\alpha_{1}}+\frac{1}{5} \frac{\mathrm{Fe}_{\text {total }}}{1+\alpha_{2}} \\
& \phi \equiv \frac{5}{2} \frac{\mathrm{Mn}_{\text {total }}}{\mathrm{U}_{\text {total }}}=\left(\frac{1+\tau}{\tau}\right)\left(\frac{1}{1+\alpha_{1}}+\frac{1}{2} \frac{\mathrm{Fe}_{\text {total }} / \mathrm{U}_{\text {total }}}{1+\alpha_{2}}\right)
\end{aligned}
$$

(d) Titration of $\mathrm{U}^{4+}+\mathrm{Fe}^{2+}$ with permanganate

	A	B	C	D	E	F	G
1	$E^{\circ}(\mathrm{T})=$	E (vs S.H.E	Tau	Alpha1	Alpha2	Phi	Volume (mL)
2	1.507	0.273	1.97E+104	$1.00 \mathrm{E}+00$	2.24E+08	0.50000	6.365
3	$\mathrm{E}^{\circ}(\mathrm{A} 1)=$	0.434	$4.86 \mathrm{E}+90$	3.61E-06	4.25E+05	1.00000	12.730
4	0.273	0.767	3.49E+62	1.99E-17	$1.00 \mathrm{E}+00$	1.72575	21.969
5	$E^{\circ}(\mathrm{A} 2)=$	1.458	$1.38 \mathrm{E}+04$	8.69E-41	$2.09 \mathrm{E}-12$	2.45168	31.210
6	0.767						
7	Nernst =						
8	0.05916		$\mathrm{C} 2=10^{\wedge}\left(5^{*}(\$ A \$ 2-B 2) / \$ 4 \$ 8-8 * \$ 4 \$ 12\right)$				
9	Ve1 =		D2 $=10^{\wedge}\left(2^{*}(\$ A \$ 4-B 2) / \$ A \$ 8-4 * \$ A \$ 12\right)$				
10	12.73		$\mathrm{E} 2=10^{\wedge}((\$ \mathrm{~A}$ ($6-\mathrm{B} 2) / \$ \mathrm{~A}$ 8 $)$				
11	$\mathrm{pH}=$		$\mathrm{F} 2=((1+\mathrm{C} 2) / \mathrm{C} 2) *((1 /(1+\mathrm{D} 2))+((0.5 * \$ \mathrm{~A} 14) /(1+\mathrm{E} 2))$)				
12	0		$\mathrm{G} 2=\$ \mathrm{~A}$ \$10*F2				
13	[Fe]/[U] =						
14	2.903						

(e)

G. (a) The analyte with the more negative reduction potential reacts first:

First: $2 \mathrm{~T}+3 \mathrm{~A} \rightarrow 2 \mathrm{~T}^{3-}+3 \mathrm{~A}^{2+} \mathrm{E}^{\circ}=0.93-(-0.13)=1.06 \mathrm{~V}$

$$
\mathrm{K}=10^{\mathrm{nE}} / 0.05916=10^{6(1.06) / 0.05916}=10^{107}
$$

Second: $\mathrm{T}+3 \mathrm{~B} \rightarrow \mathrm{~T}^{3-}+3 \mathrm{~B}^{+} \mathrm{E}^{\circ}=0.93-0.46=0.47 \mathrm{~V}$

$$
\mathrm{K}=10^{\mathrm{nE}} / 0.05916=10^{3(0.57) / 0.059} 16=10^{28}
$$

(b) 1st: $(100.0 \mathrm{~mL})(0.300 \mathrm{M})=\frac{3}{2} \mathrm{~V}_{\mathrm{e} 1}(1.00 \mathrm{M}) \Rightarrow \mathrm{V}_{\mathrm{e} 1}=20.0 \mathrm{~mL}$

2nd: $(100.0 \mathrm{~mL})(0.0600 \mathrm{M})=3 \Delta \mathrm{~V}(1.00 \mathrm{M}) \Rightarrow \Delta \mathrm{V}=2.00 \mathrm{~mL}$

$$
\Rightarrow \mathrm{V}_{\mathrm{e} 2}=22.0 \mathrm{~mL}
$$

(c) $\tau=\frac{\left[\mathrm{T}^{3-}\right]}{[\mathrm{T}]} \Rightarrow\left[\mathrm{T}^{3-}\right]=\frac{\tau \mathrm{T}_{\text {total }}}{1+\tau}$

$$
\alpha=\frac{[\mathrm{A}]}{\left[\mathrm{A}^{2+}\right]} \Rightarrow\left[\mathrm{A}^{2+}\right]=\frac{\mathrm{A}_{\text {total }}}{1+\alpha} ; \quad \beta=\frac{[\mathrm{B}]}{\left[\mathrm{B}^{+}\right]} \Rightarrow\left[\mathrm{B}^{+}\right]=\frac{\mathrm{B}_{\text {total }}}{1+\beta}
$$

From the stoichiometry of the two titration reactions, we can say
$\left[\mathrm{T}^{3-}\right]=\frac{2}{3}\left[\mathrm{~A}^{2+}\right]+\frac{1}{3}\left[\mathrm{~B}^{+}\right]$
$\frac{\tau \mathrm{T}_{\text {total }}}{1+\tau}=\frac{2}{3} \frac{\mathrm{~A}_{\text {total }}}{1+\alpha}+\frac{1}{3} \frac{\mathrm{~B}_{\text {total }}}{1+\beta}$
From the stoichiometry of the first titration reaction, we define the fraction of titration as $\phi=(3 / 2) \mathrm{T}_{\text {total }} / \mathrm{A}_{\text {total }}$, because ϕ must be unity at $\mathrm{V}_{\mathrm{e} 1}$. Rearranging the equation above gives

$$
\begin{aligned}
& \frac{\mathrm{T}_{\text {total }}}{\mathrm{A}_{\text {total }}}=\left(\frac{1+\tau}{\tau}\right)\left(\frac{2}{3} \frac{1}{1+\alpha}+\frac{1}{3} \frac{\mathrm{~B}_{\text {total }} / \mathrm{A}_{\text {total }}}{1+\beta}\right) \\
& \phi=\frac{3}{2} \frac{\mathrm{~T}_{\text {total }}}{\mathrm{A}_{\text {total }}}=\left(\frac{1+\tau}{\tau}\right)\left(\frac{1}{1+\alpha}+\frac{1}{2} \frac{\mathrm{~B}_{\text {total }} / \mathrm{A}_{\text {total }}}{1+\beta}\right)
\end{aligned}
$$

(d) Titration of analytes A and B by titrant T

	A	B	C	D	E	F	G
1	$\mathrm{E}^{\circ}(\mathrm{T})=$	E (S.H.E.)	Tau	Alpha	Beta	Phi	Volume
2	0.93	-0.16	$1.9 \mathrm{E}+55$	$1.0 \mathrm{E}+01$	$3.0 \mathrm{E}+10$	0.08824	1.765
3	$\mathrm{E}^{\circ}(\mathrm{A})=$	-0.13	$5.7 \mathrm{E}+53$	$1.0 \mathrm{E}+00$	$9.4 \mathrm{E}+09$	0.50000	10.000
4	-0.13	-0.10	$1.7 \mathrm{E}+52$	$9.7 \mathrm{E}-02$	$2.9 \mathrm{E}+09$	0.91176	18.235
5	$\mathrm{E}^{\circ}(\mathrm{B})=$	0.086	$6.3 \mathrm{E}+42$	$5.0 \mathrm{E}-08$	$2.1 \mathrm{E}+06$	1.00000	20.000
6	0.46	0.43	$2.3 \mathrm{E}+25$	$1.2 \mathrm{E}-19$	$3.2 \mathrm{E}+00$	1.02373	20.475
7	Nernst $=$	0.46	$6.8 \mathrm{E}+23$	$1.1 \mathrm{E}-20$	$1.0 \mathrm{E}+00$	1.05000	21.000
8	0.05916	0.49	$2.1 \mathrm{E}+22$	$1.1 \mathrm{E}-21$	$3.1 \mathrm{E}-01$	1.07627	21.525
9	$\mathrm{Ve} 1=$	0.797	$5.6 \mathrm{E}+06$	$4.6 \mathrm{E}-32$	$2.0 \mathrm{E}-06$	1.10000	22.000
10	20	0.9	$3.3 \mathrm{E}+01$	$1.5 \mathrm{E}-35$	$3.7 \mathrm{E}-08$	1.13312	22.662
11	[B]/[A] =						
12	0.2		$\mathrm{C} 2=10^{\wedge}(3$	(\$A\$2-B2)	\$A\$8)		
13			$\mathrm{D} 2=10^{\wedge}(2$	*(\$A\$4-B2)	\$A\$8)		
14			$\mathrm{E} 2=10^{\wedge}(($	\$A\$6-B2)/\$A	\$8)		
15		$\mathrm{F} 2=((1+\mathrm{C} 2) / \mathrm{C} 2) *((1 /(1+\mathrm{D} 2))+((0.5 * \$ \mathrm{~A}$ \$14)/(1+E2)))					
16			$\mathrm{G} 2=\$ \mathrm{~A} \$ 10^{*} \mathrm{~F} 2$				

(e) E at $\mathrm{V}_{\mathrm{e} 1}=0.086 \mathrm{~V}$; E at $\mathrm{V}_{\mathrm{e} 2}=0.797 \mathrm{~V}$
H. First reaction: $\mathrm{Ce}^{4+}+\mathrm{Fe}^{2+} \rightarrow \mathrm{Ce}^{3+}+\mathrm{Fe}^{3+}$

Second reaction: $\mathrm{Ce}^{4+}+\mathrm{Fe}(\text { phen })_{3}^{2+} \rightarrow \mathrm{Ce}^{3+}+\mathrm{Fe}(\text { phen })_{3}^{3+}$
$\mathrm{V}_{\mathrm{e} 1}=200.0 \mathrm{~mL}$ and $\mathrm{V}_{\mathrm{e} 2}=200.1 \mathrm{~mL}$
This problem is analogous to the titration of a mixture of Tl^{+}and Sn^{2+} by IO_{3}^{-}, but the stoichiometry is $1: 1: 1$ instead of $1: 2: 2$. Equation 14 becomes $\left[\mathrm{Ce}^{3+}\right]=\left[\mathrm{Fe}^{3+}\right]+$ $\left[\mathrm{Fe}(\right.$ phen $\left.){ }_{3}^{3+}\right]$ and Equation 15 becomes

$$
\phi \equiv \frac{\mathrm{Ce}_{\text {total }}}{\mathrm{Fe}_{\text {total }}}=\left(\frac{1+\tau}{\tau}\right)\left(\frac{1}{1+\alpha_{1}}+\frac{\text { Indictor }_{\text {total }} / \mathrm{Fe}_{\text {total }}}{1+\alpha_{2}}\right)
$$

where α_{1} applies to Fe^{2+} and α_{2} applies to $\mathrm{Fe}(\text { phen })_{3}^{2+}$ (indicator). The spreadsheet and graph below show that ferroin is excellent for this titration.

Spreadsheet for titration of $\mathrm{Fe}^{2+}+\mathrm{Fe}(\text { phen })_{3}^{2+}$ with Ce^{4+}

	A	B	C	D	E	F	G
1	$\mathrm{E}^{\circ}(\mathrm{T})=$	E (S.H.E.)	Tau	Alpha1	Alpha2	Phi	Volume
2	1.7	0.631	$1.2 \mathrm{E}+18$	$2.0 \mathrm{E}+02$	$5.3 \mathrm{E}+08$	0.00500	1.000
3	$\mathrm{E}^{\circ}(\mathrm{A})=$	0.691	$1.1 \mathrm{E}+17$	$1.9 \mathrm{E}+01$	$5.1 \mathrm{E}+07$	0.04936	9.872
4	0.767	0.767	$5.9 \mathrm{E}+15$	$1.0 \mathrm{E}+00$	$2.7 \mathrm{E}+06$	0.50000	100.000
5	$\mathrm{E}^{\circ}(\mathrm{B})=$	0.843	$3.1 \mathrm{E}+14$	$5.2 \mathrm{E}-02$	$1.4 \mathrm{E}+05$	0.95064	190.128
6	1.147	0.903	$3.0 \mathrm{E}+13$	$5.0 \mathrm{E}-03$	$1.3 \mathrm{E}+04$	0.99500	199.000
7	Nernst $=$	1.055	$8.0 \mathrm{E}+10$	$1.4 \mathrm{E}-05$	$3.6 \mathrm{E}+01$	1.00000	200.000
8	0.05916	1.147	$2.2 \mathrm{E}+09$	$3.8 \mathrm{E}-07$	$1.0 \mathrm{E}+00$	1.00025	200.050
9	$\mathrm{Ve} 1=$	1.326	$2.1 \mathrm{E}+06$	$3.6 \mathrm{E}-10$	$9.4 \mathrm{E}-04$	1.00050	200.100
10	200	1.487	$4.0 \mathrm{E}+03$	$6.8 \mathrm{E}-13$	$1.8 \mathrm{E}-06$	1.00075	200.150
11	[B]/[A] =	1.505	$2.0 \mathrm{E}+03$	$3.4 \mathrm{E}-13$	$8.9 \mathrm{E}-07$	1.00101	200.201
12	0.0005	1.561	$2.2 \mathrm{E}+02$	$3.8 \mathrm{E}-14$	$1.0 \mathrm{E}-07$	1.00497	200.995
13		1.623	$2.0 \mathrm{E}+01$	$3.4 \mathrm{E}-15$	$9.0 \mathrm{E}-09$	1.05046	210.093
14							
15	$\mathrm{C} 2=10^{\wedge}((\$ \mathrm{~A} 2-\mathrm{B} 2) / \$ \mathrm{~A} \$ 8)$				$\mathrm{E} 2=10^{\wedge}((\$ \mathrm{~A} \$ 6-\mathrm{B} 2) /$ / A\$8 $)$		
16	$\mathrm{D} 2=10^{\wedge}((\$ \mathrm{~A} 4-\mathrm{B} 2) /$ / A \$8)				$\mathrm{G} 2=\$ \mathrm{~A} \$ 10 * \mathrm{~F} 2$		
17	$\mathrm{F} 2=((1+\mathrm{C} 2) / \mathrm{C} 2) *\left(1 /(1+\mathrm{D} 2)+\right.$ A $\left.{ }^{\text {d }} 12 /(1+\mathrm{E} 2)\right)$						

I. Titration of Fe^{2+} with dichromate

	A	B	C	D	E	F	G
1	$E^{\circ}(\mathrm{T})=$	E (S.H.E.)	Tau	Alpha	Phi	$\mathrm{E}(\mathrm{Ag} \mid \mathrm{AgCl})$	Volume (mL)
2	1.36	0.653	5.06E+57	$9.88 \mathrm{E}+01$	0.01002	0.456	0.100
3	$E^{\circ}(A)=$	0.735	$2.44 \mathrm{E}+49$	$4.06 \mathrm{E}+00$	0.19763	0.538	1.976
4	0.771	0.761	5.63E+46	$1.48 \mathrm{E}+00$	0.40391	0.564	4.039
5	Nernst =	0.781	5.27E+44	$6.78 \mathrm{E}-01$	0.59609	0.584	5.961
6	0.05916	0.807	$1.22 \mathrm{E}+42$	$2.46 \mathrm{E}-01$	0.80237	0.610	8.024
7	$\mathrm{Ve}=$	0.827	$1.14 \mathrm{E}+40$	$1.13 \mathrm{E}-01$	0.89840	0.630	8.984
8	10	0.889	5.87E+33	$1.01 \mathrm{E}-02$	0.98998	0.692	9.900
9	$\mathrm{pH}=$	1.177	3.63E+04	$1.37 \mathrm{E}-07$	1.00000	0.980	10.000
10	1	1.224	$6.21 \mathrm{E}-01$	$2.20 \mathrm{E}-08$	1.00990	1.027	10.099
11	$\mathrm{V}(\mathrm{Fe})=$	1.234	$6.01 \mathrm{E}-02$	$1.49 \mathrm{E}-08$	1.10159	1.037	11.016
12	120	1.237	$2.98 \mathrm{E}-02$	$1.33 \mathrm{E}-08$	1.20313	1.040	12.031
13	[Cr$] \mathrm{o}=$						
14	0.04						
15			D2 = 10^((\$A\$4-B2)/\$A\$6)				
16			$\mathrm{E} 2=(0.5+\mathrm{Sqrt}(0.25+2 * E 2 * \$ A \$ 8 * \$ 4 \$ 14 /$				
17			(C2*E2*\$A\$8+C2*\$A\$12)))/(1+D2)				
18			F2 = B2-0.197				
19			G2 = \$A\$8*E2				

Column E uses a circular definition to calculate ϕ. The formula for cell E 2 is $\mathrm{E} 2=(0.5+\mathrm{SQRT}(0.25+2 * \mathrm{E} 2 * \$ \mathrm{~A} \$ 8 * \$ \mathrm{~A} \$ 14 /(\mathrm{C} 2 * \mathrm{E} 2 * \$ \mathrm{~A} \$ 8+\mathrm{C} 2 * \$ \mathrm{~A} \$ 12))) /(1+\mathrm{D} 2)$ The end of the section "Spreadsheet for Precipitation Titration of a Mixture" in this supplement explains how to handle a circular definition in a spreadsheet.

HPLC Chromatography Simulator

The Excel file Chromatogram Simulator allows you to predict how a reversed-phase chromatogram depends on solvent composition. Tabs at the bottom of the spreadsheet allow you to select different isocratic simulations and one gradient simulation.

The basis for most simulations of reversed-phase separations is the empirical linear-solvent-strength model, which supposes a logarithmic relationship between retention factor k for a given solute and the mobile phase composition Φ :

$$
\begin{equation*}
\log k \approx \log k_{\mathrm{w}}-S \Phi \tag{A}
\end{equation*}
$$

where $\log k_{\mathrm{W}}$ is the extrapolated retention factor for 100% aqueous eluent, Φ is the fraction of organic solvent ($\Phi=0.4$ for $40 \mathrm{vol} \%$ organic solvent/ $60 \mathrm{vol} / \mathrm{H}_{2} \mathrm{O}$), and S is a constant for each compound. The parameters S and $\log k_{\mathrm{W}}$ are the slope and y-intercept of the line in Figure 1. The relation between $\log k$ and Φ is not linear over a wide range of Φ.

Figure 1. Experimental data illustrate Equation A for 2,5-xylenol on C_{18} column eluted with water:methanol. Φ is the fraction of methanol and k is the retention factor. [Data from R. A. Shalliker, University of Western Sydney, Australia.]

To simulate a chromatogram for an isocratic solvent composition such as $\Phi=0.6$ for $60 \mathrm{vol} \% \mathrm{CH}_{3} \mathrm{OH} / 40 \mathrm{vol} \% \mathrm{H}_{2} \mathrm{O}$ on a particular HPLC column, we provide the following information: solvent transit time $\left(t_{\mathrm{m}}\right)=1.85 \mathrm{~min}$ and plate number $(N)=7000$. Then, for a chosen value of solvent strength Φ, the retention factor k is computed from

$$
\begin{equation*}
k=10\left(\log k_{\mathrm{W}}-S \Phi\right) \tag{B}
\end{equation*}
$$

Retention time t_{r} is computed from

$$
\begin{equation*}
t_{\mathrm{r}}=t_{\mathrm{m}}(k+1) \tag{C}
\end{equation*}
$$

Assuming a Gaussian peak shape, the standard deviation of the band is related to the retention time and plate number by the equation

$$
\begin{equation*}
\sigma=t_{\mathrm{r}} / \sqrt{N} \tag{D}
\end{equation*}
$$

	A	B	C	D	E	F	G	H	I
1	Isocratic chromatogram simulator - Gaussian peaks								
2	Data for methanol:water with Waters C-18 column - Shalliker et al., J. Chem. Ed. 2008, 85, 1265								
3									
4		constants							
5		$\mathrm{t}_{\mathrm{m}}=$	1.85	min	(time for mobile phase to transit the column)				
6		$\mathrm{N}=$	7000	plates	(plate number for column)				
7		time step =	0.01	min	(time between calculated points)				
8		sqrt(2*pi) $=$	2.50663						
9		$\Phi=$	0.56		(fraction of organic solvent)				
10									
11						k	Retention	σ (std dev	
12	Compound				Relative	retention	time	peak width)	
13	Number	Name	$\log \mathrm{k}_{\mathrm{w}}$	S	area	factor	$\mathrm{t}_{\mathrm{r}}(\mathrm{min})$	(min)	
14	1	p-nitrophenol	2.323	4.113	0.25	1.05	3.79	0.045	
15	2	phenol	1.488	2.734	0.2	0.91	3.53	0.042	
16	3	p-cresol	2.059	3.205	0.25	1.84	5.25	0.063	
17	4	2,5-xylenol	2.591	3.619	0.4	3.67	8.63	0.103	
18	5	benzene	2.895	3.806	0.8	5.80	12.59	0.150	
19	6	methyl benzoate	2.617	3.392	0.8	5.22	11.50	0.137	
20	7	anisole	2.840	3.646	0.4	6.28	13.48	0.161	
21	8	phenetole	2.734	3.258	0.4	8.12	16.87	0.202	
22	9	toluene	3.118	3.705	0.5	11.05	22.28	0.266	

F14 = 10^(C14-D14*\$C\$9)						
G14 $=$ \$C\$5*(F14+1)						
H14 = G14/SQRT(\$C\$6)						
Detector signal:						
E30 $=\left(\$ E \$ 14 /\left(\$ \mathrm{H} \$ 14^{*} \$ \mathrm{C} \$ 8\right)^{*} \mathrm{EXP}\left(-\left((\mathrm{D} 30-\$ \mathrm{G} \$ 14)^{\wedge} 2\right) /\left(2^{*} \$ \mathrm{H} \$ 14^{\wedge} 2\right)\right)\right.$)						
+ (\$E\$15/(\$H\$15*\$C\$8)*EXP(-((D30-\$G\$15)^2)/(2*\$H\$15^2)))						
+ an analogous term for each of the other compounds						

	C	D	E
27		y 28 time	
29	time	detector	
30	0	$(\mathrm{~min})$	signal
31	1	0	0
32	2	0.01	0

Figure 2. Parts of a spreadsheet
to simulate an isocratic chromatographic separation.

The spreadsheet in Figure 2 simulates an isocratic separation. Highlighted cells require your input. The time step in cell C7 gives the interval between calculated points in the chromatogram. Relative areas in cells E14:E22 are arbitrary. You could set them all to 1 or you could try to vary them to match peak heights of an experimental chromatogram. The linear solvent strength parameters $\log k_{\mathrm{W}}$ and S in cells C14:D22 are from experimental measurements like those in Figure 1 for each compound in a mixture. The spreadsheet computes k in cells F14:F22 with Equation B. It computes t_{r} in cells G14:G22 with Equation C and the standard deviation of each Gaussian peak with Equation D.

The shape of each Gaussian chromatographic peak is given by

$$
\begin{equation*}
\text { Detector signal }(y)=\frac{\text { relative area }}{\sigma \sqrt{2 \pi}} \mathrm{e}^{-\left(t-t_{\mathrm{r}}\right)^{2 / 2} \sigma^{2}} \tag{E}
\end{equation*}
$$

where relative areas are number you specified in cells $\mathrm{E}: 14: \mathrm{E} 22, t$ is time, t_{r} is the retention time in cells G14:G22, and σ is the standard deviation in cells H14:H22. The detector signal beginning in cell E30 is the sum of nine terms of the form of Equation E-one term for each compound in the mixture. Each compound has its own values of relative area, σ, and t_{r}. The spreadsheet calculates detector signal for times beginning at $t=0$ and proceeding down to $t=60 \mathrm{~min}$. The graph in Figure 3 shows detector signal versus time for an organic solvent fraction $\Phi=0.56$. The graph is terminated at 25 min after the last peak is eluted. You could change either axis of the graph to cover any desired range. You could extend the spreadsheet to longer times if necessary and you could compute points at intervals shorter than 0.01 min by changing the time step in cell C 7 .

Figure 3.
Detector signal versus time calculated by the spreadsheet in Figure 2.

Gradient Elution

Equations for simulating a linear gradient elution come from the excellent and readable book by L. R. Snyder and J. W. Dolan, High-Performance Gradient Elution (Hoboken, NJ: Wiley, 2007). The inputs you need to provide are
$t_{\mathrm{m}}=$ solvent transit time (min)

$$
\begin{aligned}
& \Phi_{\mathrm{o}}=\text { initial organic solvent fraction } \\
& \Phi_{\mathrm{f}}=\text { final organic solvent fraction } \\
& t_{\mathrm{G}}=\text { gradient time }(\mathrm{min}) \\
& t_{\mathrm{D}}=\text { dwell time }(\mathrm{min})
\end{aligned}
$$

The gradient changes from organic fraction Φ_{o} at time $t=0$ to organic fraction Φ_{f} at time t $=t_{\mathrm{G}}$ in a linear manner. The change in composition during the gradient is $\Delta \Phi=\Phi_{\mathrm{f}}-\Phi_{\mathrm{o}}$. Dwell time is the time between mixing the solvents and the time when the mixed solvent enters the chromatography column. Dwell time must be measured for your system.

In gradient elution, peaks are narrower than in isocratic elution. The gradient plate number N^{*} cannot be calculated in the same manner as we calculate N for isocratic elution. For simplicity, we will consider N^{*} for a gradient on a column to be the same as N for isocratic elution on that column.

Equations in the spreadsheet in Figure 4 for simulating a linear gradient elution are:

$$
\begin{align*}
& b=\frac{t_{\mathrm{m}} S \Delta \Phi}{t_{\mathrm{G}}} \tag{F}\\
& k_{\mathrm{o}}=10\left(\log k_{\mathrm{W}}-S \Phi\right) \quad \text { (retention factor for solute at beginning of gradient) } \tag{G}\\
& k^{*}=\frac{k_{\mathrm{o}}}{2.3 b\left[\left(k_{0} / 2\right)-\left(t_{\mathrm{D}} / t_{\mathrm{m}}\right)\right]+1} \tag{H}
\end{align*}
$$

$\left(k^{*}=\right.$ gradient retention factor $=$ value of k when solute is half way through column $)$
$t_{\mathrm{r}}=\frac{t_{\mathrm{m}}}{b} \log \left(2.3 k_{\mathrm{o}} b\left[1-\frac{t_{\mathrm{D}}}{t_{\mathrm{m}} k_{\mathrm{o}}}\right]+1\right)+t_{\mathrm{m}}+t_{\mathrm{D}}$
$\sigma=\frac{t_{\mathrm{m}}}{\sqrt{N^{*}}}\left(1+\frac{k^{*}}{2}\right)$

	A	B	C	D	E	F	G	H	I	J
1	Gradient-elution chromatogram simulator - Gaussian peaks									
2	Data for "regular" sample from Table 1.3 of									
3			L. R. Snyder and J. W. Dolan, High-Performance Gradient Elution (Wiley, 2007)							
4		constants								
5		$\mathrm{t}_{\mathrm{m}}=$	0.78	min	(time for mobile phase to transit the column)					
6		$\mathrm{N}^{*}=$	7000	plates	(gradient plate number for column)					
7		time step =	0.01	min	(time between calculated points)					
8		sqrt(2*pi) =	2.50663							
9										
10		$\Phi_{0}=$	0.4		(initial organic solvent fraction)					
11		$\Phi_{\mathrm{f}}=$	0.8		(final organic solvent fraction)					
12		$\mathrm{t}_{\mathrm{G}}=$	20	min	(gradient time)					
13		$\mathrm{t}_{\mathrm{D}}=$	3	min	(dewll time)					
14								k*		
15							k_{0}	effective	Retention	σ (std dev
16	Compound				Relative		retention	retention	time	peak width)
17	Number	Name	$\log \mathrm{k}_{\mathrm{w}}$	S	area	b	factor	factor	$\mathrm{t}_{\mathrm{r}}(\mathrm{min})$	(min)
18	1	Simazine	2.267	3.410	0.25	0.0532	8.00	7.85	6.40	0.046
19	2	Monolinuron	2.453	3.650	0.2	0.0569	9.84	8.63	7.23	0.050
20	3	Metobromuron	2.603	3.746	0.25	0.0584	12.72	9.51	8.33	0.054
21	4	Diuron	2.816	3.891	0.4	0.0607	18.18	10.50	9.91	0.058
22	5	Propazine	3.211	4.222	0.8	0.0659	33.28	11.33	12.51	0.062
23	6	Chloroxuron	3.602	4.636	0.8	0.0723	55.92	11.16	14.40	0.061
24	7	Neburon	3.920	4.882	0.4	0.0762	92.73	10.98	16.27	0.060
25	8	Prometryn	4.731	5.546	0.4	0.0865	325.54	9.98	20.13	0.056
26	9	Terbutryn	5.178	5.914	0.5	0.0923	649.23	9.40	21.87	0.053

	K	L	M	N	O	P	Q	R
5	F18 = \$C\$5*D18*(\$C\$11-\$C\$10)/\$C\$12							
6	G18 = 10^(C18-D18*\$C\$10)							
7	H18 = G18/(2.3*F18*(G18/2-\$C\$13/\$C\$5) + 1)							
8	$118=(\$ C \$ 5 / F 18) *$ LOG(2.3*G18*F18*(1-\$C\$13/(\$C\$5*G18)) + 1) + \$C\$5 + \$C\$13							
9	J18 = \$C\$5*(1+H18/2)/SQRT(\$C\$6)							
10	Detector signal:							
11	E31 = (\$E\$18/(\$J\$18*\$C\$8)*EXP(-((D30-\$1\$18)^2)/(2*\$J\$18^2)))							
12	+ an analogous term for each of the other compounds							

	C	D	E
29	time step	time (min)	signal
30	0	0	0
31	1	0.01	0
32	2	0.02	0
33	3	0.03	0

Figure 4. Parts of a spreadsheet that simulates a linear-solvent gradient chromatographic separation.

Figure 5. Simulated linear-solvent gradient chromatographic separation of compounds in the spreadsheet in Figure 4.

Fourier Transform of Infrared Spectrum with a Spreadsheet

This exercise leads you through the transformation of an interferogram into a transmittance spectrum.* You will find a collection of spreadsheets available at the publisher website at which the present document is located. In the spreadsheet "FTIR Interferogram for Supplement," you will find interferogram data for polystyrene film and for the air background from a Fourier transform infrared spectrometer. The interferograms resemble the upper two graphs in Figure 20-33 of the textbook. You will transform them into raw spectra like the middle two graphs in Figure 20-33 and then into a transmittance spectrum like the bottom of Figure 20-33. In the Excel 2010 Data ribbon, you might find Data Analysis as an option. If not, click the File menu. Select Excel Options and Add-Ins. Highlight Analysis ToolPak, click GO, and then OK to load the Analysis ToolPak. The partial spreadsheet broken into two sections here leads you through the transformation of the raw data into a transmittance spectrum.
Step 1. The file at the website provides interferogram data in columns A, B, and C. To compute the Fourier transform, Excel requires that the number of points in the interferogram be a multiple of 2^{n}, where n is an integer. The data set contains $2^{12}=$ 4096 points, providing a nominal spectral resolution of $8 \mathrm{~cm}^{-1}$. Go to Data and select Data Analysis and then Fourier Analysis and OK. To transform the air background interferogram in column B, use Input Range B11:B4106. For Output Range, enter D11 and OK. Excel will fill column D with the Fourier transform of the data in column B. Step 2. Follow the same procedure to fill column E with the Fourier transform of column C. Columns D and E are now filled with complex numbers containing a real part and an imaginary part in the form $a+b i$, where $\mathrm{i}=\sqrt{-1}$.
Step 3. The real spectrum requires the absolute value of the imaginary number, given by $\sqrt{a^{2}+b^{2}}$. In cell F11, enter the formula " $=\operatorname{IMABS}(\mathrm{D} 11)$ " to compute the absolute value of the complex number in cell D11. Then Fill Down column F to find the absolute values of data in column D. Column F now contains the air background raw spectral intensity designated I_{o}.

[^1]| | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Fourier Transform Infrared Interferograms | nominal resolution $=8 \mathrm{~cm}^{-1}$ | | |
| 2 | 4096 data points | | | |
| 3 | HeNe laser reference wavelength $=$ | | | |
| 4 | 632.991 nm $=15798.013 \mathrm{~cm}^{-1}$ in vacuum | | | |
| 5 | Wavenumber increment $=15798.0 / 4096=$ | | | |
| 6 | | 3.8569367 | $\left(\mathrm{~cm}^{-1}\right)$ | |
| 7 | | | Fourier Transform | |
| 8 | Data | Interferogram | Interferogram | |
| 9 | point | Air | Polystyrene | |
| 10 | | background | | 0.197214825930002 |
| 11 | 0 | 0.000847584 | 0.001765 | |
| 12 | 1 | -0.006530454 | -0.005366 | $-0.161958136607822+0.52501405763322 \mathrm{i}$ |
| 13 | 2 | -0.009944834 | -0.009146 | $-0.420746186106283-1.17342961926871 \mathrm{i}$ |
| 14 | 3 | -0.005566976 | -0.006120 | $0.685775121447162+0.178666041560096 \mathrm{i}$ |
| 15 | \vdots | \vdots | \vdots | \vdots |
| 16 | 4094 | -0.008450451 | -0.007381 | $-0.420746186106268+1.17342961926876 \mathrm{i}$ |
| 17 | 4095 | -0.005525374 | -0.003943 | $-0.161958136607837-0.525014057633278 \mathrm{i}$ |

	F	G	H	I
7	F11 = IMABS(D11)	G11 = IMABS(E11)	H11 = 100*G11/F11	111 = A11*\$B\$6
8	Air background	Polystyrene	Polystyrene	Wavenumber (cm^{-1})
9	Raw spectrum	Raw spectrum	Tansmittance	= data point*3.8579785 cm^{-1}
10	I。	1	100 * $/$ I。	
11	0.20	0.00	1.19	0.00
12	0.55	0.27	49.76	3.86
13	1.25	0.64	51.03	7.71
14	0.71	0.35	49.70	11.57
15	\vdots	\vdots	\vdots	!
16	1.25	0.64	51.03	15790.30
17	0.55	0.27	49.76	15794.16

Step 4. In cell G11, enter the formula " $=\operatorname{IMABS}(\mathrm{E} 11)$ " to compute the absolute value of the complex number in cell E11. Fill Down column G to compute the polystyrene raw spectral intensity I.
Step 5. Percent transmittance in column H is $100 * I / I_{\mathrm{o}}$. Enter the formula $"=100 * \mathrm{G} 11 / \mathrm{F} 11 "$ in cell H11 and then Fill Down column H.
Step 6. The last step is to convert the data point number in column A into wavenumber in column I. The HeNe laser used to trigger data collection has a vacuum wavelength $\lambda=$ 632.991 nm , which is a wavenumber of $\tilde{v}=1 / \lambda=15798.01_{3} \mathrm{~cm}^{-1}$. The interferogram contains 4096 points, each of which spans an interval of $\left(15798.01_{3} \mathrm{~cm}^{-1}\right) /(4096)=$ $3.8569367 \mathrm{~cm}^{-1}$, which appears in cell B6. In cell I11, enter the formula
" $=\mathrm{A} 11 * \$ \mathrm{~B} \$ 6$ ". Then fill down column I to obtain wavenumbers.

Step 7. Plot the full spectrum, which is a graph of transmittance in column H versus wavenumber in column I. This strange graph spans the range 0 to $15794 \mathrm{~cm}^{-1}$ and is symmetric about the center of the spectrum. Data below $\sim 500 \mathrm{~cm}^{-1}$ are not meaningful because the spectrometer cannot provide adequate energy in this range. Replot the spectrum with the abscissa range 500 to $4000 \mathrm{~cm}^{-1}$ and the ordinate range 0 to 100%.

Solution to Exercise

Your spreadsheet should reproduce the numbers in the spreadsheet shown in the problem. The full transmittance spectrum from 0 to $15794 \mathrm{~cm}^{-1}$ and the physically meaningful spectrum from 0 to $4000 \mathrm{~cm}^{-1}$ are shown below. If you plot the raw air background Fourier transformed spectrum in column F versus wavenumber, you will observe a series of sharp bands near 1600 and $3700 \mathrm{~cm}^{-1}$ arising from $\mathrm{H}_{2} \mathrm{O}$ bending and stretching modes, respectively. A doublet, which is actually an envelope of many closely spaced lines for CO_{2} stretching appears near $2350 \mathrm{~cm}^{-1}$. These same features appear in the polystyrene raw spectrum, but they are cancelled out in the quotient I / I_{0}.

Polystyrene transmittance

[^0]: \dagger A student experiment using nuclear magnetic resonance to find microequilibrium constants for N,N-dimethyl-1,3-propanediamine $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right]$ is described by O. F. Onasch, H. M. Schwartz, D. A. Aikens, and S. C. Bunce, J. Chem. Ed. 1991, 68, 791. Spectrophotometric methods for measuring microequilibrium constants are clearly described by J. C. D'Angelo and T. W. Collette, Anal. Chem. 1997, 69, 1642 and J. Hernàndez-Borrell and M. T. Montero, J. Chem. Ed. 1997, 74, 1311.

[^1]: *Q. S. Hanley, "Fourier Transforms Simplified: Computing an Infrared Spectrum from an Interferogram," J. Chem. Ed. 2012, 89, 391; B. Shepherd and M. K. Bellamy, "A Spreadsheet Exercise to Teach the Fourier Transform in FTIR Spectrometry," J. Chem. Ed. 2012, 89, 681.

