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Resampling: 
Permutation Tests 
and the Bootstrap 

Sampling distributions provide an important tool for statistical inference, and 
answer the question, “What would happen in many samples?” When our 
data were quantitative measurements from a single population, we answered 

this question by first assuming that our data were a random sample from a Normal 
population. Because our inferences were about means, they were based on the sam-
pling distribution of x, and to construct this sampling distribution, we thought of 
our data as one of many possible samples that we could have obtained from this 
Normal population. Under this set of assumptions, there are simple formulas for 
inference based on the t distribution. These inferences are useful in practice because 
they are robust, although we cannot use these methods for data that are strongly 
skewed unless the samples are large. Strong outliers can also affect our conclusions. 

The techniques of this chapter allow us to weaken some of these assumptions. Both 
permutation tests and the bootstrap are examples of resampling methods. The com-
mon element in both of these methods is the use of the individual observations in the 
sample to construct the relevant sampling distribution for inference. Without further 
assumptions about the populations from which the data were drawn, the construc-
tion of these sampling distributions is specific to the observed sample data and requires 
software to automate the required computations in all but the smallest examples. 

C  h  a  p  t  e  r  

32  

In this chapter, 
we cover... 

32.1 Randomization in 
experiments as a basis 
for inference 

32.2 Permutation tests for 
comparing two treatments 
with software 

32.3 Generating bootstrap 
samples 

32.4 Bootstrap standard errors 
and confidence intervals 

permutation tests
 
bootstrap
 
resampling
 

32-1
 

42578_ch32_online.indd  1 7/28/17  6:28 PM 



  

Permutation tests are useful for designed experiments in which the treatments 
are assigned at random to the subjects. They use the randomization in the experi-
mental design to construct the sampling distribution, and these sampling distribu-
tions are valid without the assumption of Normal distributions for any sample sizes. 
However, there are no longer simple formulas for the test statistics, and software is 
required except for situations with very small sample sizes. 

Bootstrap methods also allow us to weaken some of the traditional assumptions, 
and we can make inferences on the population from which the data are a random 
sample, regardless of the shape of the population distribution. In addition, the boot-
strap is a very general method that allows us to make inferences about parameters 
other than means without the need to modify the basic bootstrap technique. 

An experiment that uses both comparison of two or more treatments and random 
assignment of subjects to treatments is called a randomized comparative experiment (see  
Section 9.4). We make no assumptions about how subjects are selected to take part 
in the experiment and only make use of the randomness in the assignment of the 
subjects to the treatments. Here is an example of a small experiment in which we 
have six subjects that are randomly assigned to two treatments. 

Suppose you have three men—Ari, Luis, and Troy—and three women—Ana, Deb, and 
Hui—for an experiment. Three of the six subjects are to be assigned completely at 
random to a new experimental weight loss treatment and three to a placebo. Here 
are all 20 possible ways of selecting three of these subjects for the treatment group 
(the remaining three are in the placebo group). 

32-2 

32.1  Randomization in Experiments as a Basis for Inference 

EXAMPLE 32.1 

Treatment Group Treatment Group 

Ari, Luis, Troy Luis, Troy, Ana 

Ari, Luis, Ana Luis, Troy, Deb 

Ari, Luis, Deb Luis, Troy, Hui 

Ari, Luis, Hui Luis, Ana, Deb 

Ari, Troy, Ana Luis, Ana, Hui 

Ari, Troy, Deb Luis, Deb, Hui 

Ari, Troy, Hui Troy. Ana, Deb 

Ari, Ana, Deb Troy, Ana, Hui 

Ari, Ana, Hui Troy, Deb, Hui 

Ari, Deb, Hui Ana, Deb, Hui 

With a completely randomized design, each of these 20 possible treatment groups 
is equally likely; thus each has probability 1/20 of being the actual group assigned to 
the treatment. Notice that the chance that all the men are assigned to the treatment 
group is 1/20, and the chance that the treatment group consists of either all men or 
all women is 2/20. 

Although we have made no assumptions other than the random assignment of 
the subjects to the treatments, our inferences do require one additional assumption. 
If there is no difference in the effects of the new treatment and the placebo on weight 
loss, then the weight lost by any subject should be the same regardless of whether 
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32.1 Randomization in Experiments as a Basis for Inference 32-3 

the subject received the new treatment or a placebo. Here are the observed weight 
losses (in pounds) for each subject: 

Subject Ari Luis Troy Ana Deb Hui 

Weight loss 2 15 8 1 12 9 

We emphasize that if the effects of the new treatment and the placebo on weight 
loss did not differ, we would have observed these same weight losses regardless of who 
was assigned the treatment and who the placebo. Here is how we can use this fact plus 
the randomization to test the hypothesis that there is no difference in the effects of 
the new treatment and the placebo against the alternative that the new treatment pro-
duces a larger weight loss than the placebo. Notice that this is a one-sided alternative. 

We will use the mean weight lost by those receiving the new treatment minus the 
mean weight lost by those receiving the placebo to test the null hypothesis that there 
is no difference in the effects of the new treatment and the placebo on weight loss. If 
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WTLOSS there is no difference between the new treatment and the placebo, the observed dif­
ference in means is the result of the “luck of the draw”—namely which three subjects 
happened, by chance, to be assigned to the treatment group. In Example 32.1, we 
listed all 20 possible ways of selecting three of these subjects for the treatment group 
(the remaining three are in the placebo group). With a completely randomized design, 
each of these 20 possible treatment groups is equally likely; thus each has probabil­
ity 1/20 of being the actual group assigned to the treatment. We can use this informa­
tion to determine the sampling distribution of the possible observed differences in 
mean weight loss. For example, if Ari, Luis, and Troy are assigned to the treatment 
group, the mean weight loss for the group is 2 1 15 1 8  5

3 
 8.33. The mean weight  loss  

for the placebo group (Ana, Deb, and Hui) is then 1 1 12 1 9  5 
3 

7.33. The difference  
in mean weight losses (treatment group weight loss minus control group weight loss)  
is 8.33 2 7.33 5 1.00. 

We can repeat this calculation for each possible assignment of subjects to  
experimental groups. For the 20 possible ways we can assign subjects to the  
treatment and placebo groups, the differences in the mean weight losses for the  
two groups are: 

Treatment Group Control Group Difference in Mean Weight Loss 

Ari, Luis, Troy Ana, Deb, Hui 1.00 

Ari, Luis, Ana Troy, Deb, Hui 23.67 

Ari, Luis, Deb Troy, Ana, Hui 3.67 

Ari, Luis, Hui Troy. Ana, Deb 1.67 

Ari, Troy, Ana Luis, Deb, Hui 28.33 

Ari, Troy, Deb Luis, Ana, Hui 21.00 

Ari, Troy, Hui Luis, Ana, Deb 23.00 

Ari, Ana, Deb Luis, Troy, Hui 25.67 

Ari, Ana, Hui Luis, Troy, Deb 27.67 

Ari, Deb, Hui Luis, Troy, Ana 20.33 

Luis, Troy, Ana Ari, Deb, Hui 0.33 

(Continued) 
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Ordering the differences in mean weight losses from low to high, recalling that each  
assignment of subjects to the treatment groups has probability 1/20 5 0.05, and com­
bining duplicates, we obtain: 

Weight loss 28.33 27.67 25.67 23.67 23.00 21.67 21.00 20.33 
Probability 0.05 0.05 0.05 0.10 0.05 0.05 0.10 0.05 
Weight loss 0.33 1.00 1.67 3.00 3.67 5.67 7.67 8.33 
Probability 0.05 0.10 0.05 0.05 0.10 0.05 0.05 0.05 

This is the sampling distribution of  the differences in mean weight losses for the 
two groups under the assumption that weight lost by a subject does not depend on 
the group to which the subject was assigned. It is derived from considering all pos­
sible random assignments of subjects to experimental groups and is referred to as 
the  permutation distribution. From this permutation distribution, we can determine 
whether the actual observed difference is statistically significant. Figure 32.1 is a 
dotplot of this sampling distribution. 

permutation distribution 

Treatment Group Control Group Difference in Mean Weight Loss 

Luis, Troy, Deb Ari, Ana, Hui 7.67 

Luis, Troy, Hui Ari, Ana, Deb 5.67 

Luis, Ana, Deb Ari, Troy, Hui 3.00 

Luis, Ana, Hui Ari, Troy, Deb 1.00 

Luis, Deb, Hui Ari, Troy, Ana 8.33 

Troy. Ana, Deb Ari, Luis, Hui 21.67 

Troy, Ana, Hui Ari, Luis, Deb 23.67 

Troy, Deb, Hui Ari, Luis, Ana 3.67 

Ana, Deb, Hui Ari, Luis, Troy 21.00 

figure 32.1 
Output from JMP, for Example 32.2. The  
output gives a dotplot of the difference in  
mean weight losses for the 20 possible  
ways of selecting three of the subjects  
for the treatment group. The red dot cor­
responds to the case where Troy, Deb,  
and Hui are assigned to the treatment  
group. Statistical analysis relies heavily  
on statistical software, and JMP is one of  
the most popular software choices both  
in industry and in colleges and schools  
of business. Computer output from other  
statistical packages like Minitab, SPSS,  
and R is similar, so you can feel comfort­
able using any one of these packages. 
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What would we conclude if we conducted this experiment and Troy, Deb, and 
Hui were assigned to the group receiving the new treatment? In this case, the dif-
ference in mean weight losses for the two groups would be 3.67. This point is in 
red in Figure 32.1. The mean weight lost for the treatment group is greater than for 
the placebo group, and this might be regarded as evidence that the new treatment 
is effective. However, if there is no difference in the effects of the new treatment 
and the placebo, Example 32.2 suggests that the chance of observing a difference as 
large as or larger than 3.67 is 0.25. Would you regard an effect that has probability 
0.25 of occurring by chance as being rare? If not, then you would not consider the 
results to be statistically significant. The sample sizes are too small for all but the 
most extreme data to achieve statistical significance. 

Assumptions for a Simple Permutation Test 
•	 Treatments are assigned to experimental units by a randomized design. The 

randomization method is important when assessing the significance of the result. 

●	 We test the null hypothesis of no difference in the effect of the treatments on a 
response. 

If there is no difference in the effects of the treatments, then the response mea-
sured for a unit will be the same regardless of the treatment received. 

A Simple Permutation Test Procedure 
We run a randomized experiment to compare the effects of treatments on a response. 
To assess these effects, we use a statistic whose magnitude increases as the difference 
in the effects of the treatments increases. To carry out a permutation test of the null 
hypothesis of no difference in the effects of the treatments: 

•	 Determine the probability of every possible assignment of treatments to experimental 
units. 

•	 For each assignment, calculate the value of the statistic under the null hypothesis. 

•	 The probability of each possible assignment and the value of the statistic for that 
assignment is the permutation distribution of the statistic under the null hypothesis. 
This permutation distribution determines the P-value of the data resulting from the 
assignment actually obtained. 

In Example 32.2, we assumed the treatments were assigned to units using a 
completely randomized design and computed the permutation distribution of the 
difference in the sample means of the treatments under the null hypothesis of no 
difference in the effect of the treatments. We now apply these principles to conduct 
a permutation test for data from a matched pairs experiment. 

West Nile virus, chikungunya, Rocky Mountain spotted fever, and Lyme disease are  
becoming increasingly common insect-borne diseases in North America. Insect  
repellents can provide protection from bites of insects that carry these diseases, but  
which are the most effective? To investigate, we compare two insect repellents. The  
active ingredient in one is 15% DEET. The active ingredient in the other is oil of  
lemon eucalyptus. Repellents are tested on four volunteers. For each volunteer, the  
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42578_ch32_online.indd 5	 7/28/17 6:28 PM 



  

32-6 

left arm is sprayed with one of the repellents and the right arm with the other. Which  
arm receives which repellent is determined randomly. Beginning 30 minutes after  
applying the repellents, once every hour volunteers put both arms in separate  
8-cubic-foot cages containing 200 disease-free female mosquitoes in need of a  
blood meal to lay their eggs. Volunteers leave their arms in the cage for five minutes.  
The repellent is considered to have failed if a volunteer was bitten two or more times  
in the five-minute period during a one-hour session or at least once in the five-minute  
periods in two consecutive one-hour sessions. The response is the number of one-
hour sessions until a repellent fails.1 The four volunteers are Erin, Raj, Todd, and  
Wanda. Here are the number of hours until failure for the two repellents. 

Subject Erin Raj Todd Wanda 

DEET 5 7 4 4 

Oil of lemon eucalyptus 8 7 6 7 

Difference (DEET minus oil of lemon eucalyptus) 23 0 22 23 

This is a matched pairs design with the two observations on each subject form­
ing the matched pair. We use the difference between the paired responses (DEET 
minus oil of lemon eucalyptus) to determine if there is a difference in the effect of  
the treatments. 

Under the assumption of  no difference in the effects of  the two treatments,  
the number of  hours until failure for any arm of any subject would be the same  
regardless of  the repellent applied to the arm. For example, suppose in the  
experiment Erin’s left arm received DEET and her right arm received oil of  lemon  
eucalyptus. If  there were no difference in the effects of  the two treatments, we  
would have obtained the same responses if  her left arm had received oil of  
lemon eucalyptus and her right arm DEET. In other words, the number of  hours  
until failure for the left arm would still be five (even though it received oil of  
lemon eucalyptus rather than DEET) and would still be eight for the right arm  
(even though it received DEET rather than oil of  lemon eucalyptus). However, the  
observed difference would be 3 rather than 23. The observed difference of  23 
is simply the result of  the random assignment of  repellents to arms. It was just  
as likely to have been 3. 

Assignment of repellents to arms was determined by chance, and under the 
assumption of no difference in the effect of the two treatments, the responses actu­
ally observed were one of 16 equally likely possible outcomes. These 16 possible 
outcomes correspond to the 16 possible ways in which the repellents could have 
been assigned to the left and right arms of the four volunteers (two possibilities for 
Erin, two for Raj, two for Todd, and two for Wanda). 

For each subject, there are two possible ways repellents could have been  
assigned to the left and right arm. Both are equally likely and the absolute value  
of  the difference between the response to DEET and the response to oil of  
lemon eucalyptus will be the same. All that changes is whether the difference is  
negative or positive. Thus, a simpler way of  thinking about the 16 equally likely  
assignments of  repellents to the two arms is to think of  the magnitudes of  the  
differences as fixed numbers 0, 2, 3, and 3, with the signs of  the differences  
being determined by the randomization performed on each subject. The largest  
possible mean of  the differences would be 0 1 2 1 3 1 3 

4 
 5  2.0  if  the arm with the  

larger response had received DEET for each subject,  while  the  smallest  mean  of  
the difference would be 

(0) 1 (22) 1 (23) 1 (23) 

4 
 5  22.0 if  the arm with the smaller  

response had received DEET for each subject. Here are all 16 possible random­
izations with the mean of  the difference for each possible randomization. The  
first row gives the magnitude of  the difference for each subject in parentheses  
following the name. 
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 32.1 Randomization in Experiments as a Basis for Inference 32-7

Erin (3) Raj (0) Todd (2) Wanda (3) Mean of the Differences 

1 1 1 1 2.0 

1 1 1 2 0.5 

1 1 2 1 1.0 

1 2 1 1 2.0 

2 1 1 1 0.5 

1 1 2 2 20.5 

1 2 1 2 0.5 

2 1 1 2 21.0 

1 2 2 1 1.0 

2 1 2 1 20.5 

2 2 1 1 0.5 

1 2 2 2 20.5 

2 1 2 2 22.0 

2 2 1 2 21.0 

2 2 2 1 20.5 

2 2 2 2 22.0 

Ordering the differences in mean hours until failure from low to high, recalling that 
each assignment of treatments to the arms of subjects has probability 1 

16 
 5 0.0625, 

and combining duplicates, we obtain: 

Mean difference 22.0 21.0 20.5 0.5 1.0 2.0 

Probability 0.125 0.125 0.250 0.250 0.125 0.125 

This is the permutation distribution of the differences in mean hours until failure for 
the two repellents under the assumption that hours until failure for the arm of a sub­
ject do not depend on the treatment to which the arm of the subject was assigned. 
From this permutation distribution, we can determine whether the observed differ­
ence in the treatment means is statistically significant. 

For a two-sided test of no difference in the effect of the two repellents, the 
P-value is the probability of obtaining a mean difference as or more extreme (as far 
or farther from 0) than we actually observed. In the experiment, the observed mean 
difference was 22.0. From Example 32.3, the possible outcomes as far as or farther 
from 0 are 22.0 and 2.0. The probability that we would observe these values by 
chance if there were no difference in the effects of the treatments is the sum of the 
probabilities of these two values—namely, 0.125 1 0.125  5 0.250. An outcome that  
has probability 0.25 of occurring by chance would not be considered statistically sig-
nificant, and we would not regard these data as evidence of a statistically significant 
difference in the effect of DEET and oil of lemon eucalyptus. 

Notice that the most extreme outcomes possible are differences of either 22.0  
or 2.0. From Example 32.3, we see that the probability of observing one of these 
outcomes is 0.125  1 0.125  5 0.250. A  P-value of 0.250 would not typically be con-
sidered statistically significant. With only four subjects in a matched pairs experi-
ment, we are not able to demonstrate statistical significance even at the 0.1 level 
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380 (Doug) 	 370 (Elizabeth) 

400 (Oksana) 310 (Xinyi) 

420 (Sebastian)  

360 (Vishal)  
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using a permutation test. More units are needed, but with more units the number 
of possible permutations grows rapidly and it becomes difficult to enumerate all 
possibilities. Software is needed to handle larger sample sizes, and we will discuss 
this in the next section. 

Macmillan Learning Online Resources 

•	 The StatBoards video, Permutation Tests, discusses additional examples. 
•	 The Snapshots video, Resampling Procedures, includes some discussion of 
permutation tests. 

Apply your Knowledge 

32.1 A Very Simple Setting.	 Does taking notes by hand in a statistics course improve 
performance? Some recent research suggests that this may be the case.2 To explore 
this, six volunteers (Doug, Elizabeth, Oksana, Sebastian, Vishal, and Xinyi) agree to 
take part in an experiment. Four are assigned completely at random to take hand-
written notes in class, and the other two are assigned to take notes on their laptops. 
Total points earned on the two in-class exams and final exam are used to determine 
course performance. The results are (out of a possible total of 500 points): 

(a) There are 15 possible ways the six subjects can be assigned to the two 
groups, with the handwritten notes group having size 4 and the laptop 
notes group size 2. List these. 

(b) For each, determine the difference in mean points (mean number of 
points for the handwritten notes group minus mean number of points 
for the laptop notes group). Combine any duplicates and make a table of 
the possible mean differences and the corresponding probability of each 
under the null hypothesis of no difference in the effect of the treatments 
on total points earned. (Each of the 15 possible assignments of subjects 
to treatments has probability 1/15 under the null hypothesis.) This is the 
permutation distribution. 

(c) Compute the P-value of the data. Assume the two-sided alternative hypoth-
esis is that the mean number of points is different for the two groups. 

(d) In this example, is it possible to demonstrate significance at the 5% level 
using the permutation test? Explain. 

(e) Assume that total number of points is Normally distributed for both 
groups. Use the two-sample t procedure to test the hypotheses. Use 
Option 1 if you have access to software. 

32.2	  Growing Trees Faster.  The concentration of carbon dioxide (CO2) in the 
atmosphere is increasing rapidly due to our use of fossil fuels. Because plants 
use CO2 to fuel photosynthesis, more CO2 may cause trees and other plants to 
grow faster. An elaborate apparatus allows researchers to pipe extra CO2 to a 
30-meter circle of forest. They selected two nearby circles in each of three parts 
of a pine forest and randomly chose one of each pair to receive extra CO2.  
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32.2  Permutation Tests for Two Treatments with Software 

The response variable is the mean increase in base area for 30 to 40 trees in a 
circle during a growing season. We measure this in percent increase per year. 
Here are one year’s data:3  

Pair Control Plot Treated Plot Treated2Control 

1 9.752 10.587 0.835 

2 7.263 9.244 1.981 

3 5.742 8.675 2.933 

(a)  Explain why this is a matched pairs design. 

(b)  State the null and alternative hypotheses. Explain clearly why the investi-
gators used a one-sided alternative. 

(c)  Under the assumption of no difference in the effects of extra CO2 and no 
extra CO2 on the response, list all possible outcomes that could occur as 
a result of the possible random assignments of treatments to the differ-
ent matched pairs. From this list, construct the sampling (permutation) 
distribution. 

(d)  What is the P-value for the one-sided test of no difference in the effects of 
extra CO2 and no extra CO2 on the response? 

The calculations necessary to obtain the permutation distributions in the previous  
section are dependent on the individual observations in the samples, and even  
for small sample sizes require considerable computation. In this section, we look  
at some larger examples and illustrate the use of software to obtain the required  
results. In addition, although previous comparisons between the treatments were  
based on the means, there is nothing in the methodology that prevents us from  
comparing the groups using another statistic such as the median. For two inde-
pendent samples, we would just take the difference in the medians for the groups  
in each possible experiment, rather than the difference in means, to construct the  
permutation distribution. This would result in a more robust comparison of the  
treatments in the presence of outliers. Similarly, for paired data, we could compute  
the median of the differences rather than the mean when constructing the permu-
tation distribution. 

 EXAMPLE 32.4

Recapping the example of the last section, suppose you have three men—Ari, Luis, 
and Troy—and three women—Ana, Deb, and Hui—for an experiment. Three of  the 
six subjects are to be assigned completely at random to a new experimental weight 
loss treatment and three to a placebo. Troy, Deb, and Hui are assigned to the group 
receiving the new treatment with these resulting weight losses: 

Subject Ari Luis Troy Ana Deb Hui 

Weight Loss 2 15 8 1 12 9 

In this case, the difference (treatment 2 placebo) in mean weight losses for the 
two groups is 8 1 12 1 9 2 1 15 1 1 

2  5 3.67.
3 3 

 Using the permutation distribution worked 
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figure 32.2 
Output from JMP, for Example 32.4. The 
output gives the histogram estimating 
the permutation distribution for the differ­
ence in mean weight losses and the as­
sociated P-value using 10,000 random 
permutations. 

out in Example 32.2, we have shown that the P-value, the chance of observing a 
difference as large as or larger than 3.67, is 0.25. . 

Some specialized statistical software for a permutation test uses the full enumera­
tion of all possible permutations for smaller sample sizes to obtain the permutation 
distribution and P-value. However, with larger sample sizes, the number of permuta­
tions becomes so large that the permutation distribution must be simulated using a 
random sample of permutations. Software, such as JMP, simulates the permutation 
distribution for all sample sizes when calculating a P-value. If we simulate enough 
permutations, the answer will be very close to the one that would be obtained by a 
full enumeration of all permutations. To see this, we use the simulation process on 
this small data set and observe how the simulated resampling distribution we obtain 
compares with the exact resampling distribution we computed in Example 32.2. 

Figure 32.2 gives the JMP output for this example. The histogram estimating the 
permutation distribution was obtained by simulating 10,000 random permutations 
and agrees very closely with the permutation distribution derived in Example 32.2 
based on all possible permutations. The shaded bars in the histogram include values 
for the difference in means that are greater than or equal to 3.67, and the empirical 
P-value of 0.2537 is very close to the theoretical value of 0.25. 

42578_ch32_online.indd 10 

The use of a random sample of permutations to simulate the permutation distri-
bution and calculate the P-value means that the answers obtained will vary from one 
simulation to another, but choosing a large number of permutations will decrease 
the variability from one simulation to another. Both aspects of this will be explored 
in the next example. 

EXAMPLE 32.5 

Example 32.4 used 10,000 random permutations to simulate the permutation 
distribution and calculate the P-value for the weight loss data. Because the sample 
sizes for the two groups were small, in Example 32.2 we were able to list all pos­
sible permutations and compute the exact P-value. Comparison of the simulated 
value to the exact value showed very good agreement. In general, the simulated 
permutation distribution and P-value will tend to be closer to the true permutation 
distribution and P-value when we use a larger number of simulated permutations. 
Figure 32.3(a) shows a second resampling using 10,000 random permutations 
for the weight loss data of Example 32.2. We see that the P-value is again close 
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to the true value of 0.25, and the simulated permutation distribution again agrees  
well with the exact permutation distribution. The use of 10,000 simulations—or  
even 1000 simulations—will generally be large enough to give sufficiently accu­
rate results for most purposes. If  greater accuracy is required, then the number of  
simulations can be increased. 

figure 32.3 
Output from JMP, for Example 32.5.   
(a) Histogram estimating the permutation  
distribution for the difference in mean  
weight losses and the associated P-value  
using 10,000 random permutations.   
(b) Histogram estimating the permutation   
distribution for the difference in mean  
weight losses and the associated P-value  
using 100 random permutations. 

Figure 32.3(b) uses 100 random permutations to simulate the permutation dis­
tribution and P-value. In this case, we see that the estimated P-value is farther from 
the true value of 0.25, and the simulated permutation distribution shows less overall 
agreement with the true permutation distribution. The use of 100 resamples tends 
to be too small to produce accurate results as the answers will vary considerably 
among different simulations. 

The next example has sample sizes of 27 in each group, which results in 
1.95 3 1015 possible permutations, going beyond the limitations of software to 
enumerate all permutations. The example is again worked out using JMP software 
with 10,000 random permutations generated to approximate the permutation 
distribution. 
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figure 32.4 
Output from JMP, for the data of 
Example 32.6. The output provides a 
comparative boxplot for the bonding 
scores for the no-pain and pain groups. 

Although painful experiences are involved in social rituals in many parts of the world, 
little is known about the social effects of pain. Will sharing a painful experience in a 
small group lead to greater bonding of group members than sharing a similar nonpain­
ful experience? Fifty-four university students in South Wales were divided at random 
into a pain group containing 27 students, and a no-pain group containing the remain­
ing 27 students. Pain was induced by two tasks. In the first task, students submerged 
their hands in freezing water for as long as possible, moving metal balls at the bottom 
of the vessel into a submerged container, and in the second task, students performed 
a standing wall squat with back straight and knees at 90° for as long as possible. The 
no-pain group completed the first task using room temperature water for 90 seconds 
and the second task by balancing on one foot for 60 seconds, changing feet if neces­
sary. In both the pain and nonpain settings, the students completed the tasks in small 
groups, which typically consisted of four students and contained similar levels of group 
interaction. Afterward, each student completed a questionnaire to create a bonding 
score based on responses to seven statements such as, “I feel the participants in this 
study have a lot in common” or “I feel I can trust the other participants.” Each response 
was scored on a five-point scale (1 = strongly agree, 5 = strongly disagree) and the 
scores on the seven statements were averaged to create a bonding score for each 
subject. Here are the bonding scores for the subjects in the two groups:4 

No-pain group: 3.43 

3.00 

3.00 

4.86 

3.14 

3.00 

1.71 

4.14 

2.86 

1.71 

4.29 

2.14 

3.86 

2.43 

4.71 

3.14 

2.71 

1.00 

4.14 

4.43 

3.71 

3.14 

3.43 

4.43 

1.29 

3.71 

1.29 

Pain group: 4.71 

4.14 

2.29 

4.86 

3.86 

4.00 

4.14 

4.57 

4.43 

1.29 

4.57 

4.71 

2.29 

4.29 

4.71 

4.43 

1.43 

2.14 

3.57 

4.29 

3.57 

4.43 

3.57 

3.57 

3.57 

3.43 

3.43 

Do the data show that sharing a painful experience in a small group leads to higher 
bonding scores for group members than sharing a similar nonpainful experience? 
Figure 32.4 is a comparative boxplot of the two samples. 
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As hypothesized, the “Pain” group tends to have higher bonding scores than  
the “No-Pain” group, with two low outliers. Figure 32.5 gives the JMP output for  
the permutation test, which compares the sample means in the two treatments. The  
estimated histogram for the permutation distribution is based on 10,000 simulated   
permutations, and the output gives an observed difference in means of 0.577 and  
a one-sided P-value of  0.0231. The two-sample t-test applied to these data has a  
one-sided P-value of 0.0240, in very close agreement with the permutation test. The  
agreement between the two-sample t and the permutation test that uses the difference  
between the two sample means to compare the treatments is not a coincidence. Theory  
tells us that, for larger sample sizes, both procedures tend to yield similar results. 

figure 32.5 
Output from JMP, for Example 32.6.  
The output gives the histogram  
estimating the permutation distribution  
for the difference in sample means and  
the associated P-value using 10,000  
random permutations. 

We know that the sample mean is not robust in the presence of outliers, which sug­
gests that in this example, we might prefer to use a more robust statistic such as the  
median to compare the two treatments. For the permutation distribution, no new theory  
is required. For each permutation, rather than computing xPain 2 xNoPain, we compute  
instead MPain 2 MNoPain, where M indicates the sample median. We then compare the  
observed difference in the two medians to the estimated permutation distribution for the  
difference in the two medians to find the P-value. Figure 32.6 gives the JMP output for  
this permutation distribution and reports a P-value of 0.0108. Additionally, as expected,  
the estimate of the difference MPain 2 MNoPain 5 0.86 is larger than xPain 2 xNoPain 5 0.577  
because the two low outliers in the pain group have little effect on the median of the  
pain group but a large effect in reducing the mean of the pain group. 

figure 32.6 
Output from JMP, for Example 32.6. 
The output gives the histogram esti­
mating the permutation distribution for 
the difference in sample medians and 
the associated P-value using 10,000 
random permutations. 
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The presence of outliers in the pain group is not due to an error. Rather, it is likely 
that there are a small portion of subjects who would experience little bonding regard­
less of which treatment they were assigned to. When these subjects are assigned to 
the “Pain” group, they appear as outliers because most bonding scores are higher, 
while when assigned to the “No-Pain” group, their scores do not appear unusually 
low. For these reasons, the use of means to compare these treatments is not the best 
option, and an analysis using medians is preferable. 

The subjects in the experiment of Example 32.6 consist of both male and female 
students. Is there a difference in the level of bonding experienced by male and 
female students when having a painful experience in a small group? While this is 
a reasonable question, we need to see if a permutation test is still appropriate for 
answering it. We no longer have a comparative experiment because it was the treat-
ments that were assigned at random to the subjects, not their sex. Here is a way of 
thinking about this question that leads directly to the use of a permutation test to 
compare the sexes, but has a slightly different justification than in the comparison 
of treatments in a randomized comparative experiment. 

Think of the 27 bonding scores in the pain group as fixed numbers that are to 
be randomly assigned to the 27 students in the “Pain” group. If these scores are 
assigned at random to the 27 students, then the sex variable should be unrelated to 
the resulting bonding scores, whereas if the sex variable were related to the bond-
ing score, then we would expect to find either the male or female group to have 
larger bonding scores. Here is how we can use permutation tests to see if there is a 
relationship between sex and bonding score. 

For each random assignment of the scores to the students, compute the differ-
ence in median scores for males and females. The resulting sampling distribution 
for this difference in medians is exactly the same as the permutation distribution we 
would have obtained if males and females were considered treatments. Comparing 
the observed difference in median bonding scores for the two sexes to this permu-
tation distribution produces a valid test of the null hypothesis that the scores are 
randomly assigned to the students against the alternative that there is a difference 
in average bonding scores for the males and females in the “Pain” group. 

EXAMPLE 32.7 

DA
TA

 

PAIN2 

The “Pain” group contains nine males and 18 females. Here are the bonding scores 
for the two groups: 

Males: 1.29 4.43 4.43 3.57 3.86 4.57 3.43 4.71 4.71 
Females: 4.71 4.86 4.14 2.29 3.57 3.43 4.14 4.57 4.29 

1.43 4.29 3.57 3.57 2.29 4.00 4.43 2.14 3.57 

Do the data show that sharing a painful experience in a small group leads to 
higher bonding scores for either males or females? 

The comparative boxplot in Figure 32.7 suggests that males may have higher bond­
ing scores than females, although the males have a low outlier, which suggests we 
compare the groups using medians rather than means. The JMP output in Figure 32.8 
gives the estimated histogram for the permutation distribution and has a two-sided 
P-value of 0.2672. However, the sample sizes are small, and a larger study designed 
to test the hypothesis that males tend to have higher bonding scores than females 
when experiencing pain in small groups might be of further interest. 
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figure 32.7 
Output from JMP, for the data of 
Example 32.7. The output provides a 
comparative boxplot for the bonding 
scores for males and females in the pain 
group. 

figure 32.8 
Output from JMP, for Example 32.7. The 
output gives the histogram estimating 
the permutation distribution for the 
difference in sample medians and 
the associated P-value using 10,000 
random permutations. 

The next example uses R software to carry out the calculations for a permuta-
tion test for paired data. As in the two-sample problem, the software simulates the 
permutation distribution to approximate the P-value. 

EXAMPLE 32.8 

Here are the golf scores of 12 members of a college women’s golf team in two 
rounds of tournament play. (A golf score is the number of strokes required to com­
plete the course, so low scores are better.) 

DA
TA

 

GOLF 

Player 

1 2 3 4 5 6 7 8 9 10 11 12 

Round 2 94 85 89 89 81 76 107 89 87 91 88 80 

Round 1 89 90 87 95 86 81 102 105 83 88 91 79 

Difference 5 25 2 26 25 25 5 216 4 3 23 1 
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Negative differences indicate better (lower) scores on the second round. Based 
on this sample, can we conclude that this team’s golfers perform differently in the 
two rounds of a tournament? 

This is a matched pairs design with the two observations on each player form­
ing the matched pair. We use the average of the differences between the paired 
responses (Round 2 minus Round 1) to determine if there is evidence that the golf­
ers perform differently in the two rounds of the tournament. As in Example 32.3, 
the permutation distribution is obtained by assigning plus and minus signs to the 
absolute values of the differences in the two scores in all possible ways and for each 
assignment computing the average of the resulting differences. Because the num­
ber of possible ways of assigning plus and minus signs gets large very quickly, we 
again simulate a random sample of possible assignments of plus and minus signs to 
approximate the permutation distribution. 

Figure 32.9 gives a histogram of the averages of the differences obtained from 
10,000 simulated assignments of plus and minus signs to the absolute values of 
the differences using R software. This should provide a good approximation to the 
permutation distribution of the average difference. The observed average difference 
for this data is 21.67, and because this is a two-sided test, the P-value is the  
area under the permutation distribution less than or equal to 21.67 plus the area  
greater than or equal to 1.67. Several percentiles, obtained by R, are displayed in  
Figure 32.9 (the percentile is the value in the second line, and the first line is the  
area less than or equal to that value written as a percentage). The area less than  
or equal to 21.67 is 0.208, and the area greater than or equal to 1.67 is 1 minus  
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figure 32.9 
Output from R, for Example 32.8. The 
output gives the histogram estimating 
the permutation distribution for the dif­
ference in sample means and selected 
percentiles of this distribution. Statisti­
cal analysis relies heavily on statistical 
software, and R is an extremely powerful 
statistical environment that is free to 
anyone; it relies heavily on members 
of the academic and general statisti­
cal communities for support. Computer 
output from other statistical packages 
like JMP, Minitab, and SPSS is similar, so 
you can feel comfortable using any one 
of these packages. 
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the area less than or equal to 1.5, or 1 2 0.786 5 0.214. This gives a P-value  
of 0.422, suggesting little difference in the scores between the two rounds. The  
matched pairs t  test has P  5  0.3716, showing very similar conclusions to the  
permutation test. 

In this and the previous section, we have demonstrated how to compute P-values 
for permutation tests using both enumeration of all possible randomizations to 
obtain the exact permutation distribution and simulation to approximate this distri-
bution. The bootstrap is another example of a resampling method. It can be used to 
estimate standard errors of statistics and construct confidence intervals. We discuss 
the bootstrap in the next two sections. 

Macmillan Learning Online Resources 

•	 The technology manuals for JMP and R explain how to use software to do a 
permutation test. 

Apply your Knowledge 

32.3	 A Very Simple Setting with Medians. In Exercise 32.1, data were given 
comparing course performance by students taking handwritten notes with 
those taking notes on their laptops. The comparison was based on the means 
of the two treatments and the permutation distribution for the difference in 
means was constructed. 

(a) Give the permutation distribution for the difference in the medians 
for the two treatments using the 15 possible assignments of subjects to 
treatments. 

(b) Compute the P-value of the data. Assume the two-sided alternative hypoth-
esis is that the median number of points is different for the two groups. 

32.4	 Do Birds Learn to Time Their Breeding? The exercises in Chapter 
21 discuss a study of whether supplementing the diet of blue titmice with 
extra caterpillars will prevent them from adjusting their breeding date 
the following year to obtain a better food supply. Thirteen pairs of birds 
were randomly assigned to either a supplemental diet or their natural diet 
(the control group), with seven pairs assigned to the supplemental diet and 
the remainder to the control diet. Here are the data (days after the caterpil-
lar peak):

Control 4.6 2.3 7.7 6.0 4.6 21.2 

Supplemented 15.5 11.3 5.4 16.5 11.3 11.4 7.7 

The null hypothesis is no difference in timing; the alternative hypothesis is 
that the supplemented birds miss the peak by more days because they don’t 
adjust their breeding date. Figure 32.10 gives the estimated histogram for the 
permutation distribution of 10,000 simulated permutations for the permuta-
tion test that compares the sample medians (median for the supplemental 
group minus the median for the control group) for the two treatments. Use 

DA
TAFigure 32.10 to estimate the P-value of the test. BREED 
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figure 32.10 
The estimated histogram for the permu­
tation distribution for the difference in  
sample medians, for Exercise 32.4. 

32.5	  Nintendo and Laparoscopic Skills (Software Required).  In laparoscopic  
surgery, a video camera and several thin instruments are inserted into the patient’s  
abdominal cavity. The surgeon uses the image from the video camera positioned  
inside the patient’s body to perform the procedure by manipulating the instru-
ments that have been inserted. It has been found that the Nintendo Wii, with its  
motion-sensing interface, reproduces the movements required in laparoscopic sur-
gery more closely than other video games. If training with a Nintendo Wii can  
improve laparoscopic skills, it can complement the more expensive training on a  
laparoscopic simulator. Forty-two medical residents were chosen, and all were test-
ed on a set of basic laparoscopic skills. Twenty-one were selected at random to un-
dergo systematic Nintendo Wii training for one hour per day, five days per week,  
for four weeks. The remaining 21 residents were given no Nintendo Wii training  
and were asked to refrain from video games during this period. At the end of four  
weeks, all 42 residents were tested again on the same set of laparoscopic skills. One  
of the skills involved a virtual gall bladder removal with several performance mea-
sures, including time to complete the task recorded. Here are the improvement  
(before–after) times in seconds after four weeks for the two groups:6 

DA
TA

NINT 

Treatment Control Control 

291 134 186 128 84 243 21 66 54 85 229 92 

212 121 134 221 59 244 43 27 77 229 214 88 

79 333 213 216 71 216 145 110 32 90 45 281 

71 77 144 68 61 44 

Does the Nintendo Wii training significantly increase the mean improvement time? 

(a) Use software to estimate the histogram for the permutation distribution 
for the difference in the mean improvements for the two groups (mean 
improvement for the treatment group minus the mean improvement for 
the control group). Use 10,000 simulated permutations. 

(b) From your estimated histogram, compute the P-value of the data. 
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32.6	 Comparing Two Insect Repellants (Software Required). In Example 32.3 
we compared two insect repellants using a permutation test for a matched 
pairs experiment. Because of the small sample size, we were able to obtain the 

DA
TAexact permutation distribution as: REPEL 

Mean difference 22.0 21.0 20.5 0.5 1.0 2.0 

Probability 0.125 0.125 0.250 0.250 0.125 0.125 

In this example, the observed mean difference in treatments (DEET 2 oil of 
lemon eucalyptus) is 22. Using this permutation distribution, we have shown 
that the two-sided P-value, the chance of observing a difference this extreme, 
is 0.25. 

(a) Simulate the permutation distribution using 100 simulations and give the 
estimated P-value. Repeat this with a second simulation. How close are 
the answers to the exact permutation distribution and P-value? 

(b) Simulate the permutation distribution using 10,000 simulations and give 
the estimated P-value. Repeat this with a second simulation. How close 
are the answers to the exact permutation distribution and P-value? 

(c) What do the results in parts (a) and (b) show about the effect of the num-
ber of simulations on the estimated permutation distribution and P-value? 
Explain briefly. 

In Chapter 2, we looked at samples of travel times to work in both North Carolina 
and New York. Here is a stemplot of the travel times in minutes for the 15 workers 
in North Carolina, chosen at random by the U.S. Census Bureau:

The stemplot of the 20 travel times of the random sample of workers in New York 
state is 
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bootstrap method 

sampling with replacement 

bootstrap samples 

Suppose we want confidence intervals for the average travel time in New York  
and the average travel time in North Carolina, or we want to compare the travel  
times for New York and North Carolina by finding a confidence interval for the  
ratio of the average travel time in New York to the average travel time in North 
Carolina. The travel times in both North Carolina and New York are skewed to the  
right with high outliers. The sample sizes are moderate, raising some concerns about  
the use of the t procedures for confidence intervals on the individual means, and we  
have no current method for finding a confidence interval for the ratio of two means. 

The statistics we would use to estimate the average travel times in New York and 
North Carolina are the means of the samples from each state, while for the statistic 
to estimate the ratio we could use the ratio of these sample means. But inference 
requires the sampling distributions of these statistics. The bootstrap method pro-
vides a way to approximate these sampling distributions using the information in 
the original samples. This is done by generating many samples by sampling with  
replacement  from the original sample. These samples with replacement are called 
bootstrap samples. 

Sampling with Replacement  
To sample with replacement from a population, after an observation is selected, return 
it to the population before the next observation is drawn. Thus, the same observation 
can be selected multiple times when taking a random sample with replacement. If you 
are sampling with replacement using Table B, when you come to a label that has previ-
ously been used, do not ignore it but include the observation corresponding to this label 
in the sample again. When using software, you often have the option to select a sample 
either with or without replacement. 

A bootstrap sample from the North Carolina travel times is obtained by treating 
the original sample of 15 travel times as representing the population. The phrase 
“representing the population” is important because by sampling with replacement 
from the sample, we mimic what would happen if we took a random sample from 
a population consisting of many, many copies of the original sample. To sample 
from this population, we select a random sample with replacement of the 15 travel 
times. This process of selecting random samples with replacement from the original 
sample is referred to as resampling. Here are three bootstrap samples obtained by 
resampling from the North Carolina travel times, along with the means of these 
bootstrap samples. Note that the mean of the 15 original North Carolina travel 
times is 22.47 minutes. 

30 25 20 10 30 5 40 25 25 30 10 10 40 30 25 mean 5 23.67 
40 10 10 12 10 20 60 10 10 10 30 10 30 20 10 mean 5 19.47 
5 40 60 15 20 12 10 25 40 30 25 25 40 60 60 mean 5 31.13 

In the first sample, the observation of 25 minutes was selected four times, and 
in the third sample, the observation of 60 minutes was selected three times. This 
can occur because we are sampling with replacement. As expected, the means of 
the three bootstrap samples fluctuate about the original sample mean of 22.47 
minutes. In practice, we will select a large number of bootstrap samples for statisti-
cal inference. 

Because the original random sample of 15 North Carolina times should be 
representative of the population of all North Carolina travel times, the bootstrap 
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samples should mimic selecting random samples from this population. And the  
bootstrap distribution of a statistic computed from these bootstrap samples  
should give an approximation to the sampling distribution of this statistic.  

bootstrap distribution 

Bootstrap Method  
●	 Create many bootstrap samples, and for each bootstrap sample, compute the 

statistic of interest. 

●	 The distribution of this statistic from the bootstrap samples is known as the boot-
strap distribution and provides an approximation to the sampling distribution of 
the statistic. 

EXAMPLE 32.9 

We wish to estimate the population mean of the North Carolina travel times and will 
use x, the sample mean, as our estimate. To approximate the sampling distribution of 
the sample mean for the North Carolina travel times, take 1000 bootstrap samples 

DA
TA

 

TRAVNC from the North Carolina travel times, and for each bootstrap sample, compute the 
sample mean. Figure 32.11(a) provides a histogram of the 1000 sample means 
obtained, which is the bootstrap distribution of the sample mean. 

figure 32.11 
Output from JMP, for Example 32.9. 
(a) Histogram of the bootstrap distribu­
tion for the mean travel times using 
1000 random bootstrap samples. 
(b) Histogram of the bootstrap 
distribution for the mean travel times 
using a second set of 1000 random 
bootstrap samples. 

The mean of these 1000 bootstrap sample means is 22.61, and the standard 
deviation is 3.78. This bootstrap distribution is an approximation to the sampling 
distribution of x. The shape of the sampling distribution is fairly well approximated by 
the normal curve superimposed on the histogram, although there is a slight skew to 
the right. This suggests that our t methods from Chapter 20 should work fairly well 
for making inferences about the population mean of the North Carolina travel times, 
because the t methods assume that the sampling distribution of x is approximately 
normal. We will return to this in the next section, where we discuss confidence inter­
vals based on the bootstrap method.

 As with any simulation method, the accuracy of the answers is improved as the 
number of simulations is increased. Figure 32.11(b) provides the bootstrap distribu­
tion for a second resampling of 1000 bootstrap samples from the North Carolina 
travel times. The mean of these 1000 bootstrap sample means is 22.43, and the 
standard deviation is 3.75. The shape of the bootstrap distribution is similar to that 
given in Figure 32.11(a), with the mean being slightly smaller and the variability 
being virtually identical. In general, 1000 bootstrap samples are sufficient to approxi­
mate the sampling distribution of a statistic unless very high accuracy is required. 
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 xNY/  Unlike Example 32.9, this bootstrap distribution is not that 
well approximated by the normal curve superimposed on the histogram and shows 
considerable right skewness. 

xNC.

The next example looks at the bootstrap distribution of the ratio of two sample 
means, a situation for which we currently have no methods for inference. 

DA
TA

 

TRAVEL 

figure 32.12 
Output from JMP, for Example 32.10. 
The output gives the histogram of the 
bootstrap distribution for the ratio of 
mean travel times using 1000 random 
bootstrap samples. 

EXAMPLE 32.10 

We wish to estimate the ratio of the population means of the travel times in New 
York and North Carolina—specifically, the mean of the New York travel times divided 
by the mean of the North Carolina travel times. As our estimate we will use xNY 

/xNC,  
the ratio of the sample means. In this case, the bootstrap method requires that we 
resample from both the New York and the North Carolina travel times to obtain the 
bootstrap distribution of the ratio. Here is the process we need to follow: 

•	 Select a resample of the New York travel times and a resample of the North Carolina 
travel times. After obtaining the mean for each resample, compute the ratio of the 
mean of the New York travel times to the mean of the North Carolina travel times. 

•	 Repeat this process 1000 times to obtain 1000 bootstrap estimates of the ratio. 

Figure 32.12 provides a histogram of the 1000 bootstrap estimates of the ratio 
of the means of New York to North Carolina travel times. This is the bootstrap distri­
bution for the ratio of the two means. 

The mean of these 1000 bootstrap sample ratios is 1.42, and the standard 
deviation is 0.33. This bootstrap distribution is an approximation to the sampling 
distribution of 

The bootstrap distribution depends on both the number of bootstrap samples 
selected and the particular bootstrap samples obtained. This means that, for a fixed 
number of bootstrap samples, two individuals using this method will obtain differ-
ent bootstrap distributions. As seen in Example 32.9, the choice of 1000 bootstrap 
samples is generally sufficiently large that the differences obtained in the bootstrap 
distributions will be fairly small. In the next section, we show how to use the boot-
strap distribution to provide confidence intervals. There are several methods to 
generate confidence intervals from the bootstrap distribution, and we provide the 
details for the bootstrap percentile confidence interval. 
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Macmillan Learning Online Resources 
•	 The technology manuals describe how to sample with replacement using 
several software packages. 

Apply your Knowledge 

32.7	 Generating Bootstrap Samples. Here are the SAT mathematics scores of  
a random sample of seven students selected from the freshman class at Georgia  

DA
TASouthern University:  SAT 

470	 690 540 570 470 680 710 

(a) Compute the mean SAT mathematics score for this sample. 

(b) Generate three bootstrap samples by resampling from the original sample  
of Georgia Southern University SAT mathematics scores. For each boot-
strap sample, compute the mean. If you are using Table B, begin at line 116.  

(c) How do the means of the bootstrap samples compare to the mean of the  
original sample? Is this what you would expect? Explain.  

32.8	 New York Travel Times (Software Required). Generate 1000 bootstrap  
samples by resampling from the New York travel times. For each bootstrap  

DA
TAsample, compute the bootstrap sample mean.  TRAVNY 

(a) What are the mean and standard deviation of the 1000 bootstrap sample  
means?  

(b) Draw a histogram of the bootstrap distribution of the sample mean using  
the 1000 bootstrap sample means. If your software allows this, superim-
pose a normal curve on the histogram. Describe the shape of this boot-
strap distribution.  

32.9	 Pulling Wood Apart (Software Required). How heavy a load (pounds) is  
needed to pull apart pieces of Douglas fir 4 inches long and 1.5 inches square?  

DA
TAHere are data from students doing a laboratory exercise:  WOOD 

33,190 31,860 32,590 26,520 33,280  
32,320 33,020 32,030 30,460 32,700  
23,040 30,930 32,720 33,650 32,340  
24,050 30,170 31,300 28,730 31,920  

Generate 1000 bootstrap samples by resampling from these data. For each  
bootstrap sample, compute the bootstrap sample mean.  

(a) What are the mean and standard deviation of the 1000 bootstrap sample  
means?  

(b) Draw a histogram of the bootstrap distribution of the sample mean using  
the 1000 bootstrap sample means. If your software allows this, superim-
pose a normal curve on the histogram. Describe the shape of this boot-
strap distribution.  

32.4 Bootstrap Standard Errors and Confidence Intervals 
The variability in the bootstrap distribution reflects how the statistic of interest var-
ies from sample to sample. A numerical measure of this variability is the standard 
deviation of the bootstrap distribution known as the bootstrap standard error. For bootstrap standard error 

the sample mean, we know from theory that the standard error of the mean is given 
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bootstrap percentile  
confidence interval 

by the formula s/Ïn. Referring to the North Carolina travel times in Example 32.9, 
the standard deviation of the original sample of 15 travel times is s 5 15.231, and 
the standard error of the mean is s/Ï15 5 3.93. The bootstrap standard errors 
for the two sets of 1000 resamples of the North Carolina travel times reported 
in Example 32.9 are 3.78 and 3.75, respectively, fairly close to the value based on 
theory. This illustrates the advantage of the bootstrap method: It can produce an 
estimate of the standard error of a statistic in situations where we do not have a 
simple formula. 

Our method of constructing a confidence interval for a parameter has been to 
use the endpoints of the central area of the sampling distribution of the estimate. 
Confidence intervals for proportions or means have found this central area by 
using the appropriate percentile of either the z or the t distribution multiplied by  
the standard error of the estimate. In a similar manner, the bootstrap percentile  
confidence interval  treats the bootstrap distribution as the sampling distribution 
of the estimate and, for a specific confidence coefficient, uses the appropriate per-
centiles that mark off the central area of this bootstrap distribution to form the 
confidence interval. 

Bootstrap Percentile Confidence Interval  
For a 95% bootstrap confidence interval, use the lower 2.5 percentile and the upper   
97.5 percentile of the bootstrap distribution as the endpoints of the confidence  
interval. For a 90% confidence interval, use the lower 5 percentile and the upper   
95 percentile.  

DA
TA

 

TRAVNC 

Unlike our previous confidence intervals, the bootstrap percentile confidence 
interval does not assume that the sampling distribution of the estimate is normal 
or even symmetric. Many software packages will produce a bootstrap confidence 
interval, but there are several variations of the bootstrap confidence interval that 
lead to different answers. We will have more to say about these other intervals and 
the situations for which the bootstrap percentile confidence interval is appropriate, 
but first here are some examples of the bootstrap percentile confidence interval 
using software. 

EXAMPLE 32.11 

We wish to estimate the population mean of the North Carolina travel times using a 
95% confidence interval. In Example 32.9, we saw that the bootstrap distribution of 
the sample mean is fairly well approximated by a normal curve, suggesting that 
despite the skewness and single outlier present, the sampling distribution of x is 
approximately normal. Figure 32.13(a) and Figure 32.13(b) provide the JMP output 
giving bootstrap percentile confidence intervals associated with the bootstrap distri­
butions in Figure 32.11(a) and Figure 32.11(b), respectively. In Figure 32.13(a), 
the 95% bootstrap confidence interval is 16.0033 minutes to 30.3317 minutes. 
The original sample mean is 22.47 minutes, and because of the slight asymmetry in 
the bootstrap distribution, the confidence interval is not centred about the sample 
mean as the usual t interval is. The 95% confidence interval using the t is 14.03 
minutes to 30.90 minutes. The agreement between these intervals is reasonable, 
with the bootstrap interval making a small adjustment for the skewness of the sam­
pling distribution. 
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As noted in Example 32.9, the bootstrap distribution in Figure 32.11(b) is similar 
to that in Figure 32.11(a), although the distribution has a slightly smaller mean. This 
suggests that there should be good agreement between the bootstrap percentile 
confidence intervals obtained from the two bootstrap distributions. Comparing the 
bootstrap percentile confidence intervals in Figures 32.13(a) and 32.13(b), there 
are small differences in the 95% intervals, while the intervals are almost identical for 
the remaining confidence coefficients reported. 

Although we have done multiple resampling in this example, it is important to 
realize that this was done for illustration and is not appropriate statistical practice. 
Taking multiple resamples and using the “best” answer invalidates the properties of 
the procedures, whether it be a bootstrap confidence interval or a permutation test. 

EXAMPLE 32.12 

The bootstrap distribution for the ratio of the population means of the travel times 
in New York and North Carolina is given in Example 32.10. The bootstrap distribu­
tion is skewed to the right and less well approximated by a normal curve than in the 
previous example. Figure 32.14 gives the JMP output containing several percentiles 
of this bootstrap distribution. The estimate of the ratio based on the original samples 
is xNY/xNC 5 31.250/22.467 5 1.39. 

The 95% confidence interval for the ratio is 0.89 to 2.14, showing that the mean 
travel time to New York is more than 90% of and less than double the mean travel time 
to North Carolina. Again we see that the interval is not centered around the estimate. 

figure 32.13 
Output from JMP, for Example 32.11. 
(a) Bootstrap confidence intervals for 
the bootstrap distribution for the 
mean travel times using 1000 random 
bootstrap samples. (b) Bootstrap  
confidence intervals for the bootstrap  
distribution for the mean travel times  
using a second set of 1000 random  
bootstrap samples. 

DA
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figure 32.14 
Output from JMP, for Example 32.12.  
The output gives several percentiles of  
the bootstrap distribution for the ratio of  
mean travel times using 1000 random  
bootstrap samples. 
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EXAMPLE 32.13 

DA
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figure 32.15 
Output from R, for Example 32.13. 
(a) Histogram of the data from   
Exercise 20.43. (b) Histogram of the  
bootstrap distribution for the mean of the  
estimated total amounts of oil using 1000  
random bootstrap samples. (c) Summary  
statistics for the bootstrap distribution for  
the mean of the estimated total amounts  
of oil using 1000 random bootstrap  
samples. 

Exercise 20.43 gives the estimated total amounts of  oil (in thousands of  barrels) 
for a random sample of 64 wells in the Devonian Richmond Dolomite area of the 
Michigan basin. Figure 32.15(a) is a histogram of the original data from R, and 
Figure 32.15(b) is a histogram from R of the bootstrap distribution for the mean of  
1000 resamples. The original distribution is very skewed with several high outliers. 
The bootstrap distribution appears to be fairly well approximated by a normal curve. 
The endpoints of  the 95% bootstrap percentile confidence interval are determined 
by the 2.5% and 97.5% quantiles given in Figure 32.15(c), and the 95% bootstrap 
percentile confidence interval is 39.24 thousand barrels to 58.26 thousand barrels. 
The 95% t  confidence interval is 38.20 thousand barrels to 58.30 thousand barrels. 
The good agreement between these two confidence intervals is not surprising given 
the approximate normality of the bootstrap distribution, which results from the fairly 
large sample size. 

Although we have provided a confidence interval for the mean, because of the 
extreme skewness of the original distribution, a better measure of the center of   
the distribution is the median because it is less affected by the long right tail and the 
outliers. For the original data, we have x 5 48.25 thousand barrels, and the sample 
median is M 5 37.8 thousand barrels. The R output for the bootstrap distribution and 
confidence interval for the median are given in Figure 32.16(a) and Figure 32.16(b), 
respectively. The bootstrap distribution is fairly irregular and less well approximated 
by a normal curve. The 95% confidence interval is 32.7 thousand barrels to 47.6 
thousand barrels. Because the bootstrap confidence intervals for the mean and 
median are for two different parameters, they cannot be compared directly with each 

(a) 

(b) 

(c) 
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(a) 

(b) 

other. The bootstrap standard error for the mean is 4.93 thousand barrels, and for 
the median the bootstrap standard error is 4.01 thousand barrels. Based on a com­
parison of the standard errors, we are not surprised that the bootstrap confidence 
interval for the median is shorter than the bootstrap confidence interval for the mean. 

In our discussion of methods for inference about means based on the Normal 
distribution, and for our inferences for proportions, we were able to be fairly spe-
cific about the conditions under which the methods were valid. Unfortunately, for 
bootstrap methods, our recommendations will be a little more vague. An important 
issue is how to correctly carry out the resampling. If the sample is from a single 
population, then we just resample from the original sample. In Example 32.9, our 
resampling required that we resample independently from both samples to estimate 
a ratio, while in a simple linear regression setting, we would need to resample the 
X and Y values in pairs when bootstrapping the estimate of the slope or intercept. 

The bootstrap method does not work equally well for all statistics. The bootstrap 
procedure we have described requires a fairly large sample size when bootstrap-
ping the median. For odd sample sizes, the median is the middle observation, and 
when resampling from a small sample such as the North Carolina travel times, the 
bootstrap medians take only a few distinct values, and the resulting bootstrap dis-
tribution is not an accurate reflection of the sampling distribution of the median. 
Although the situation is somewhat better for even sample sizes due to the averaging 

figure 32.16 
Output from R, for Example 32.13. 
(a) Histogram of the bootstrap distribution   
for the median of the estimated total  
amounts of oil using 1000 random boot­
strap samples. (b) Summary statistics for  
the bootstrap distribution for the median  
of the estimated total amounts of oil using  
1000 random bootstrap samples. 
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of the two middle observations, more advanced bootstrapping techniques have 
been developed that work better for the median when the sample sizes are small. 

Finally, certain statistics may show a bias that can be estimated using the boot-
strap distribution. When substantial bias is found to be present or the bootstrap 
distribution is highly skewed, more sophisticated confidence intervals than the 
percentile method presented in this section are generally recommended. Our 
treatment of the bootstrap should be viewed as an introduction to a very powerful 
technique, and further reading is advised for those planning on using the bootstrap 
in their data analysis.8 

Macmillan Learning Online Resources 
•	 The	 technology	 manual	 for 	JMP 	explains	 how 	to 	use 	software 	to 	compute	 
bootstrap	 standard	 errors	 and 	confidence	 intervals. 

Apply your Knowledge 

32.10 New York Travel Times: Mean (Software Required).	 In Exercise 32.8, 
you found the bootstrap distribution for the mean of the New York travel 
times. Use this distribution to find the 90% bootstrap percentile confidence 
interval for the population mean of the New York travel times. Compare this 
interval to the 90% confidence interval based on the t distribution. Is this what 
you would expect? Explain briefly. DA

TA

TRAVNY 

32.11 New York Travel Times: Standard Deviation (Software Required). 
Unlike inference about the mean of a Normal population, inference about the 
standard deviation of a Normal population is not robust. That is, it does not 
remain valid even for small departures from the Normal distribution. The 
bootstrap method can be used to find a confidence interval for the standard 
deviation that does not assume the population of New York travel times is 

DA
TANormal. TRAVNY  

(a) For the New York travel times, generate 1000 bootstrap samples, and for 
each bootstrap sample compute the standard deviation. What are the mean 
and standard deviation of the 1000 bootstrap sample standard deviations? 

(b) Draw a histogram of the 1000 bootstrap sample standard deviations. 
Describe the shape of this bootstrap distribution. 

(c) Find a 95% bootstrap percentile confidence interval for the population 
standard deviation of the New York travel times. 

Chapter 32 SuMMarY 

Chapter Specifics 
•	 The permutation distribution for a test statistic is determined by computing, from the 

observed data, all possible values of the statistic and the probability of these values under 
the assumption that treatments are assigned to experimental units using a randomized 
design. To compute the possible values of the test statistic, assume the null hypothesis is 
of no treatment effect so that the responses associated with each experimental unit would 
have been observed regardless of which treatment the unit received. The probability of 
the possible values is computed from the experimental design used to assign units to 
treatments. For a completely randomized design, all possible assignments of treatments 
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to experimental units are equally likely. The permutation distribution for a test statistic  
is also known as the randomization distribution.  

•	 For a simple permutation test, we assume treatments are assigned to units by a random-
ized design and that we wish to test the null hypothesis of no difference in the effect 
of treatments on a response. We determine the permutation distribution and find the 
P-value by computing the probability of observing a response as or more extreme than the 
response actually observed according to the permutation distribution. 

•	 To sample with replacement from a population, after each observation is selected, return 
it to the population before the next unit is sampled. Thus, the same unit can be selected 
multiple times when taking a random sample with replacement. 

•	 The bootstrap method provides a way to approximate the sampling distribution of a 
statistic using the information in the original sample. This is done by generating many 
samples by sampling with replacement from the original sample. These samples with 
replacement are called bootstrap samples. For each bootstrap sample, compute the sta-
tistic of interest. The distribution of this statistic, computed from the bootstrap samples, 
is known as the bootstrap distribution and provides an approximation to the sampling 
distribution of the statistic. 

•	 The bootstrap standard error for a statistic is the standard deviation of the bootstrap 
distribution of the statistic. In particular, it is the standard deviation of all values of the 
statistic generated by the bootstrap method. 

•	 The bootstrap percentile confidence interval for a parameter treats the bootstrap distri-
bution of the statistic used to estimate the parameter as the sampling distribution of the 
statistic. For a specific confidence coefficient, use the appropriate upper and lower per-
centiles, and mark off the central area of this distribution to form the confidence interval. 

Statistics in Summary 
Here are the most important skills you should have acquired from reading this chapter. 

A. Permutation Tests 
1. Compute the permutation distribution when a very small number of subjects are  

assigned, using a completely randomized design, to two treatment groups, for both  
paired and unpaired data.  

2. From the permutation distribution, compute the P-value for a one-sided and two- 
sided test of significance for comparing two treatments.  

3. Use software to simulate the permutation distribution when subjects are assigned,  
using a completely randomized design, to two treatment groups for paired or  
unpaired data.  

B. Bootstrap Methods 
1. Use software to generate many bootstrap samples from the original sample. 
2. From bootstrap samples, generate the bootstrap distribution to approximate the  

sampling distribution of a statistic.  
3. From the bootstrap distribution for a statistic, compute the bootstrap standard error. 
4. From the bootstrap distribution for a statistic, compute the bootstrap percentile  

confidence interval for the corresponding parameter.  

Link It 
In Chapter 9, we discussed randomized designs. In Chapter 12, we discussed how to com-
pute the probability of any possible assignment of treatments to experimental units for a 
completely randomized design. In Chapter 15, we introduced sampling distributions and 
showed how to compute P-values when a completely randomized design is used and we wish 
to test the null hypothesis of no treatment effects. In Chapter 17, we demonstrated how to 
compute P-values by simulating the sampling distribution of a statistic. 
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In this chapter, we formalize these ideas and discuss two resampling methods. First, we 
introduce permutation tests by expanding the discussions in Chapters 15 and 17. We also 
explain how to use software to conduct permutation tests for randomized designs with more 
than a small number of experimental units. Second, we introduce the bootstrap method 
as a way to approximate the sampling distribution of a statistic even when we do not know 
the distribution of the population from which the sample was selected. From this bootstrap 
distribution, we can compute P-values, standard errors of statistics, and confidence intervals 
for the parameter estimated by a statistic. Software is required to generate bootstrap distribu-
tions in practice. 

Macmillan Learning Online Resources 
If you are having difficulty with any of the sections of this chapter, these online 
resources should help prepare you to solve the exercises at the end of this 
chapter: 

•	 LearningCurve provides you with a series of questions about the chapter 
catered to your level of understanding. 

CheCK your sKills 

32.12	  What is the effect of concussions on the brain? Re-
searchers measured the brain sizes (hippocampal volume  
in microliters) of 25 collegiate football players with a  
history of clinician-diagnosed concussion and 25 colle-
giate football players without a history of concussion.

a plot over a year.10 Here are data for 2004 (mass in 
grams per square meter): 

Winter Control 

254.6453 178.9988 

233.8155 205.5165 

253.4506 242.6795 

228.5882 231.7639 

158.6675 134.9847 

212.3232 212.4862 

9  
Researchers planned to conduct a hypothesis test to see  
if there was evidence of a difference in the mean brain  
size between football players with  a history of concussion  
and those without concussion. Which of the following  
statements is true? 

(a) We must use a permutation test because we cannot 	
be sure if the data come from a Normal population. 

We wish to test whether there is a difference in 
mean biomass between the two treatment groups. 
Which of the following is true? 

(b)  We should not use a permutation test because  
permutation tests assume subjects are a random  
sample from some population and the football  
players in the study were not selected by random  
sampling.  

(a)  This is a randomized controlled experiment,  
hence a permutation test is more appropriate than  
a t test. 

(c) Neither (a) nor (b) is true. 
(b)  This is a randomized controlled experiment, and 

we should try both the permutation test and the t 
test and always report only the one with the smaller 
P-value.

32.13  The changing climate will probably bring more rain to 
California, but we don’t know whether the additional 
rain will come during the winter wet season or extend 
into the long dry season in spring and summer. Ken-
wyn Suttle of the University of California at Berkeley 
and his coworkers carried out a randomized controlled 
experiment to study the effects of more rain in either 
season. They randomly assigned 12 plots of open grass-
land to two treatments: added water equal to 20% of 
annual rainfall during January to March (winter) or no 
added water (control). One response variable was total 
plant biomass, in grams per square meter, produced in 

(c)  We might prefer using a permutation test for  
these data rather than a t test, because the sample  
sizes are small and the data contain some possible  
outliers. 

32.14 Figure 32.17 gives the estimated histogram for the per-
mutation distribution, based on 10,000 simulated per-
mutations, of the difference in sample means (mean 
for winter minus mean for the control) for the data in 
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Exercise 32.13. For purposes of testing whether there 
is a difference in mean biomass between the two treat-
ment groups, we would estimate the P-value to be  
(assume a two-sided alternative) 

(a)  larger than 0.05. 

(b)  between 0.05 and 0.01. 

(c)  smaller than 0.01. 

32.15  Our bodies have a natural electrical field that is known to  
help wounds heal. Does changing the field strength slow  
healing? A series of experiments with newts investigated  
this question. In one experiment, the two hind limbs of  
four newts were assigned at random to either experimen-
tal or control groups. This is a matched pairs design. The  
electrical field in the experimental limbs was reduced to  
zero by applying a voltage. The control limbs were left  
alone. Here are the rates at which new cells closed a razor  
cut in each limb, in micrometers per hour:11 

Newt 1 2 3 4 

Control limb 36 41 39 42 

Experimental limb 28 31 27 33 

The number of possible random assignments of treat-
ments to the different matched pairs is 

(a) 4. 

(b)  8. 

(c)  16. 

32.16  In Exercise 32.15, suppose we wish to test whether the 
healing rate is significantly lower in the experimental 
limbs using a permutation test. Even without listing all 
possible random assignments of treatments to the dif-
ferent matched pairs, we can conclude that the P-value 
from the permutation test is 

(a)  larger than 0.05. 

(b)  smaller than 0.05 but larger than 0.01. 

(c)  smaller than 0.01. 

32.17  We plan to use the bootstrap method to construct a 
confidence interval for a population median from a 
sample of 43 subjects from the population. An impor-
tant assumption for using the bootstrap method is 

(a)  the sample is a random sample from the population. 

(b)  the sampling distribution for the sample median 
must not be well approximated by the Normal   
distribution. 

(c)  there are no outliers in the sample. 

32.18  We select a random sample of six freshman students 
from the University of California at Santa Cruz and 
find that their verbal GREs are 480, 510, 590, 670, 520, 
and 630. Which of the following is not a possible boot-
strap sample? 

(a)  480, 480, 480, 480, 480, 480 

(b)  480, 480, 480, 670, 670, 670 

(c)  480, 630, 630, 740, 590, 510 

figure 32.17 
The estimated histogram for the permutation distribution for the difference in sample medians, for Exercise 32.14. 
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  Cicadas as fertilizer? 
(software required)
Exercise 7.48 gives data 
from an experiment   
in  which some bell- 
flower  plants in a for-
est were “fertilized”   
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32.19  A 95% bootstrap percentile confidence interval for the 
population mean 

(a)  is centered about the original sample mean. 

(b)  is centered about the mean of the bootstrap means. 

ChApter 32 eXerCIses 
32.20 How strong are durable press fabrics? “Durable press” 

cotton fabrics are treated to improve their recovery 
from wrinkles after washing. Unfortunately, the treat-
ment also reduces the strength of the fabric. A study 
compared the breaking strengths of fabrics treated by 

DA
TA CICADA two commercial durable press processes. Five swatches 

of the same fabric were assigned at random to each pro-
cess. Here are the data, in pounds of pull needed to tear 

Cicada Plants Control Plants 

0.237 0.277 0.241 0.142 0.212 0.188 0.263 0.253 

0.109 0.209 0.238 0.277 0.261 0.265 0.135 0.170 

0.261 0.227 0.171 0.235 0.203 0.241 0.257 0.155 

0.276 0.234 0.255 0.296 0.215 0.285 0.198 0.266 

0.239 0.266 0.296 0.217 0.178 0.244 0.190 0.212 

0.238 0.210 0.295 0.193 0.290 0.253 0.249 0.253 

0.218 0.263 0.305 0.257 0.268 0.190 0.196 0.220 

0.351 0.245 0.226 0.276 0.246 0.145 0.247 0.140 

0.317 0.310 0.223 0.229 0.241 

0.192 0.201 0.211 

the fabric:12 

DA
TA FABRICS 

Permafresh 29.9 30.7 30.0 29.5 27.6 

Hylite 28.8 23.9 27.0 22.1 24.2 

There is a mild outlier in the Permafresh group. Per-
haps we should use a permutation test to test the hy-
pothesis of no difference in median pounds of pull 
needed to tear the fabric. Assume a two-sided alterna-
tive and estimate the P-value. 

32.21 Do good smells bring good business? (software 
required) Exercise 21.9 describes an experiment that 
tested whether background aromas in a restaurant en-
courage customers to stay longer and spend more. 
The data on amount spent (in euros) are as follows: 

(c)  uses the 2.5 and the 97.5 percentiles of the boot-
strap distribution as the endpoints of the confi-
dence interval. 

with  dead cicadas and other plants were not disturbed.  
The data record the mass of seeds produced by 39 cicada- 
supplemented plants and 33 undisturbed (control) 
plants. Here are data (seed mass in milligrams) for  
39 cicada plants and 33 undisturbed (control) plants:13 

DA
TA ODORS4 

Do the data show that dead cicadas increase seed mass? 
Use a permutation test to estimate the appropriate P-
value. 

No Odor 

15.9 18.5 15.9 18.5 18.5 21.9 15.9 15.9 15.9 15.9 

15.9 18.5 18.5 18.5 20.5 18.5 18.5 15.9 15.9 15.9 

18.5 18.5 15.9 18.5 15.9 18.5 15.9 25.5 12.9 15.9 

Lavender Odor 

21.9 18.5 22.3 21.9 18.5 24.9 18.5 22.5 21.5 21.9 

21.5 18.5 25.5 18.5 18.5 21.9 18.5 18.5 24.9 21.9 

25.9 21.9 18.5 18.5 22.8 18.5 21.9 20.7 21.9 22.5 

Is there significant evidence that the lavender odor en-
courages customers to spend more? Use a permutation 
test to estimate the appropriate P-value. 

32.22

32.23  Adolescent obesity (software required).  Adolescent  
obesity is a serious health risk affecting more than 5  
million young people in the United States alone. Lapa-
roscopic adjustable gastric banding has the potential to  
provide a safe and effective treatment. Fifty adolescents  
between 14 and 18 years old with a body mass index  
higher than 35 were recruited from Melbourne, Austra-
lia, for the study.14 Twenty-five were randomly selected  
to undergo gastric banding, and the remaining 25 were  
assigned to a supervised lifestyle intervention program  
involving diet, exercise, and behavior modification. All  
subjects were followed for two years. Here are the weight  
losses in kilograms for the subjects who completed the  
study. In the gastric banding group: A
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DA
T ADOBESE 

35.6 81.4 57.6 32.8 31.0 37.6 36.5 25.4 27.9 49.0 64.8 39.0 

43.0 33.9 29.7 20.2 15.2 41.7 53.4 13.4 24.8 19.4 32.3 22.0 
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In the lifestyle intervention group: 

6.0 2.0 23.0 20.6 11.6 15.5 217.0 1.4 4.0 

24.6 15.8 34.6 6.0 23.1 24.3 216.7 21.8 212.8 

Does gastric banding result in significantly greater 
weight loss than a supervised lifestyle intervention 
program? Use a permutation test to estimate the 
appropriate P-value. 

32.24  Ancient air (software required). The composition of  
the earth’s atmosphere may have changed over time.  
To try to discover the nature of the atmosphere long  
ago, we can examine the gas in bubbles inside an-
cient amber. Amber is tree resin that has hardened  
and been trapped in rocks. The gas in bubbles within  
amber should be a sample of the atmosphere at the  
time the amber was formed. Measurements on speci-
mens of amber from the late Cretaceous era (75 mil-
lion to 95 million years ago) give these percentages of  
nitrogen:

17 

DA
TA EMIT

1.15 0.33 0.40 0.33 1.35 0.38 0.25 0.40 0.35 
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DA
TA ANCTAIR 

63.4 65.0 64.4 63.3 54.8 64.5 60.8 49.1 51.0 

Assume (this is not yet agreed on by experts) that these 
observations are an SRS from the late Cretaceous at-
mosphere. 

(a) Construct a 95% bootstrap confidence interval for (a) Make a stemplot. Are there outliers or strong skew-
ness that would forbid use of the t procedures? the mean percentage of nitrogen in ancient air (the 

population). 

(b) We wonder if ancient air differs significantly from 
the present atmosphere, which is 78.1% nitrogen. 
Based on your confidence interval in part (a), what 
do you conclude? 

32.25  Water quality (software required). To investigate   
water quality, on August 8, 2010, the Columbus   
Dispatch took water samples at 20 Ohio State Park  
swimming areas. Those samples were taken to labora-
tories and tested for fecal coliform, which are bacteria  
found in human and animal feces. An unsafe level of  
fecal coliform means there’s a higher chance that   
disease-causing bacteria are present and more risk  
that a swimmer will become ill, so it is important to  
estimate fecal coliform levels in park swimming areas.  
Here are the fecal coliform levels found by the labora-
tories: A

32.26  Exhaust from school buses (software required). In a 
study of exhaust emissions from school buses, the pollu-
tion intake by passengers was determined for a sample 
of nine school buses used in the Southern California 
Air Basin. The pollution intake is the amount of ex-
haust emissions, in grams per person, that would be 
breathed in while travelilng on the bus during its usual 
18-mile trip on congested freeways from South Central 
LA to a magnet school in West LA. (As a reference, the 
average intake of motor emissions of carbon monoxide 
in the LA area is estimated to be about 0.000046 gram 
per person.) Here are the amounts for the nine buses 
when driven with the windows open:

(b)  Construct a 95% bootstrap confidence interval for 
the mean pollution intake among all school buses 
used in the Southern California Air Basin that travel  
the route investigated in the study. 

32.27 Pulling wood apart (software required). Exercise 1.46 
gave data on how heavy a load is needed to pull apart 
pieces of Douglas fir. Construct a 95% bootstrap confi-
dence interval for the mean load required to pull apart 
pieces of Douglas fir. DA

TA WOOD 

32.28 Does nature heal best? (software required). Exercise 
20.33 (page 472) gives these data on the healing rate 
(micrometers per hour) for cuts in the hind limbs of 12 
newts: DA

TA NEWTS 

Newt 1 2 3 4 5 6 7 8 9 10 11 12 

Control limb 36 41 39 42 44 39 39 56 33 20 49 30 

Experimental 
limb 

28 31 27 33 33 38 45 25 28 33 47 23 

16 

DA
T WQUAL 

160 40 2800 80 2000 2000 1500 400 150 500  

3000 2200 15 80 2000 2000 2600 600 1000 1500  

We are willing to regard these particular 20 samples as 
an SRS from a large population of possible samples. 
Construct a 95% bootstrap confidence interval for the 
mean fecal coliform level in Ohio State Park swimming 
areas. 

The electrical field in the experimental limbs was 
reduced to zero by applying a voltage. The control 
limbs were not treated, so that they had their natu-
ral electrical field. Does changing the electrical field 
slow healing? Do a permutation test to answer this 
question. 
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Exploring thE WEb 

32.29 Bootstrapping in practice. Bootstrapping is often used to construct confidence in-
tervals for parameters more complicated than means. One example can be found 
online at the JAMA website (jama.jamanetwork.com/journal.aspx) in 
David J. Nyweide et al., “Association of pioneer accountable care organizations vs 
traditional medicare fee for service with spending, utilization, and patient experi-
ence,” Journal of the American Medical Association 313 (2015), pp. 2152–2162. Look at 
the end of the section titled “Claims Analyses.” The authors used bootstrapping to 
find a 95% confidence interval for a difference in differences of means. How many 
bootstrapped samples were used to determine the 95% confidence interval? 

Another example at the JAMA website is Robert A. Fowler et al., “Cost-effectiveness 
of Dalteparin vs unfractionated Heparin for the prevention of venous thrombo-
embolism in critically ill patients,” Journal of the American Medical Association 312 
(2014), pp. 2135–2145. Look at the end of the section titled “Analytic Plan.” The 
authors used bootstrapping to construct a 95% confidence interval for incremental 
cost differences. How many bootstrap samples did they use? 

Notes and Data Sources 
The description of this experiment is based on the methodology described in 
“How to win the battle of the bugs,” Consumer Reports, July 2015, pp. 34–37. Al-
though artificial, the data given in the example are consistent with the findings of 
Consumer Reports. 
Pam A. Mueller and Daniel M. Oppenheimer, “The pen is mightier than the keyboard: 
Advantages of longhand over laptop note taking,” Psychological Science, 25, no. 6 (2014), 
pp. 1159–1168. 
We thank Jason Hamilton, University of Illinois, for providing the data. The study is 
reported in Evan H. DeLucia et al., “Net primary production of a forest ecosystem with 
experimental CO2 enhancement,” Science, 284 (1999), pp. 1177–1179. No method for 
inference can be trusted with n 5 3. In this study, each observation is very costly, so the 
small n is inevitable. 
Brock Bastian et al., “Pain as social glue: Shared pain increases cooperation,” Psychologi-
cal Science, 25 (2014), pp. 2079–2085 
Fabrizio Grieco, Arie J. van Noordwijk, and Marcel E. Visser, “Evidence for the effect of 
learning on timing of reproduction in blue tits,” Science, 296 (2002), pp. 136–138. The 
data are from a graph in this paper. 
Domenico Giannotti et al., “Play to become a surgeon: Impact of Nintendo Wii training 
on laparoscopic skills,” PLOS ONE, V8, e5272, February 2013, at www.plosone.org. 
From the 2003 American Community Survey, at the U.S. Census Bureau website, www  
.census.gov. The data are a subsample of the 13,194 individuals in the ACS North 
Carolina sample who had travel times greater than zero. 
For some discussion of more advanced methods for correcting for bias, see Compan-
ion Chapter 18 by T. C. Hesterberg et al. to D.S. Moore et al., The Practice of Business 
Statistics, 2nd ed., W.H. Freeman, 2008. A more advanced discussion can be found in 
B. Efron and R. Tibshirani, An Introduction to the Bootstrap, Chapman and Hall, 1993. 
Rashmi Singh et al., “Relationship of collegiate football experience and concussion with 
hippocampal volume and cognitive outcomes,” Journal of the American Medical Associa-
tion, 311 (2014), pp. 1883–1888. 
K. B. Suttle, Meredith A. Thomsen, and Mary E. Power, “Species interactions reverse 
grassland responses to changing climate,” Science, 315 (2007), pp. 640–642. Here we 
present data for only winter and the control, omitting data for a treatment involving 
added water in the spring. 
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11.	  Data provided by Drina Iglesia, Purdue University. The data are part of a larger study 
reported in D. D. S. Iglesia, E. J. Cragoe, Jr., and J. W. Vanable, “Electric field strength 
and epithelization in the newt (Notophthalmus viridescens),” Journal of Experimental Zoology,  
274 (1996), pp. 56–62. 
Sherri A. Buzinski, “The effect of position of methylation on the performance proper-
ties of durable press treated fabrics,” CSR490 honors paper, Purdue University, 1985. 
Louie H. Yang, “Periodical cicadas as resource pulses in North American forests,”  
Science, 306 (2004), pp. 1565–1567. The data are simulated Normal values that match 
the means and standard deviations reported in this article. 
Paul E. O’Brien et al., “Laparascopic adjustable gastric banding in severely obese adoles-
cents,” Journal of the American Medical Association, 303 (2010), pp. 519–526. We thank the 
authors for providing the data. 
R. A. Berner and G. P. Landis, “Gas bubbles in fossil amber as possible indicators for 
the major gas composition of ancient air,” Science, 239 (1988), pp. 1406–1409. 
This study was found online at 	www.dispatch.com/content/stories/ 
local/2010/08/15/algae-isnt-only-problem-for-lakes 
.html. 
J. D. Marshall et al., “Vehicle self-pollution intake fraction: Children’s exposure to 
school bus emissions,” Environmental Science and Technology, 39 (2005), pp. 2559–2563. 
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