
ERROR BOUNDS
FOR NUMERICAL
INTEGRATION

I n Section 8.1 (ET Section 7.1), we studied three methods of numerical integration: the
Trapezoidal Rule TN , the Midpoint Rule MN , and Simpson’s Rule SN . These “rules”

provide numerical approximations to a definite integral∫ b

a
f (x) dx

For each rule, we stated an Error Bound which provides an upper limit to the size of
the error in the approximation. In this supplement, we prove the Error Bounds for TN

and MN . The Error Bound for SN may be proved in a similar fashion, but the details are
somewhat more complicated and the proof is omitted.

Error Bound for the Midpoint Rule

We treat the Midpoint Rule first. Let N ≥ 1 be a positive integer. Recall from Section
8.1 (ET Section 7.1) that MN is equal to the sum of the (signed) areas of the N midpoint
rectangles (Figure 1). More precisely, we divide the interval [a, b] into N subintervals of
length

�x = b − a

N

The endpoints of the subintervals are

x j = a + j�x j = 0, 1, . . . , N

and the midpoint of the j th interval [x j−1, x j ] is

c j = a +
(

j − 1

2

)
�x

x0 = a xN = bx1 xj −1 xjc1

MN is the sum of the areas of
the midpoint rectangles.

(A)

cj

height f (cj)

The shaded rectangle and the shaded
trapezoid both have area  f (cj)Δx

x0 = a xN = bx1 xj −1 xjc1

MN is also equal to the sum of the
areas of the tangential trapezoids.

(B)
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The j th midpoint rectangle is the rectangle of height f (c1) over the subinterval [x j−1, x j ].
This rectangle has signed area

f (c j )�x

and MN is equal to the sum of the signed areas of these rectangles:

MN = �x
(

f (c1) + f (c2) + · · · + f (cN )
)

1

The error in the approximation MN is

Error(MN ) =
∣∣∣∣
∫ b

a
f (x) dx − MN

∣∣∣∣
Our goal is to prove the following theorem.

THEOREM 1 Error Bound for MN Let K2 be a number such that | f ′′(x)| ≤ K2 for
all x ∈ [a, b]. Then

Error(MN ) ≤ K2(b − a)3

24N 2

Our proof of Theorem 1 uses the interpretation of MN in terms of tangential trape-
zoids. Recall from Section 8.1 (ET Section 7.1) that MN is equal to the sum of the signed
areas of the trapezoids whose top edges are tangent to the graph of f (x) at the midpoints
of the subintervals (Figure 1(B)).The total error Error(MN ) is not greater than the sum

y = L(x)

y = f (x)

The area between the graph and the
tangent line is at most K2(Δx)3/24

xj −1 xjcj

Δx

FIGURE 2 The graph of y = L(x) is the
tangent line at the midpoint c j .

of the errors over the subintervals [x j−1, x j ] (it may be less due to cancellation if the
tangent line lies above the graph on some intervals and below it others). Therefore, if we
denote the error over [x j−1, x j ] by E j , then

Error(MN ) ≤
N∑

j=1

E j

We will prove that E j is at most K2(�x)3/24 for all j , where �x = (b − a)/N . In other
words,

E j ≤ K2

24
(�x)3 = K2

24

(
b − a

N

)3

= K2(b − a)3

24N 3
2

Since there are N subintervals, the total error is at most N times this quantity:

Error(MN ) ≤ N

(
K2(b − a)3

24N 3

)
= K2(b − a)3

24N 2

This is the bound stated in Theorem 1. Therefore, Theorem 1 follows if we prove (2).
The error E j is equal to the signed area between the tangent line and the graph over

[x j−1, x j ] (Figure 2). More precisely, let L(x) be the linear approximation to f (x) at
x = c j

L(x) = f (c j ) + f ′(c j )(x − c j )

The graph of L(x) is the tangent line to the graph at x = c j and

E j =
∣∣∣∣∣
∫ x j

x j−1

(
f (x) − L(x)

)
dx

∣∣∣∣∣
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Using inequality (3), we obtainThe following inequality is valid for all
integrable functions g(x):∣∣∣∣∣

∫ b

a
g(x) dx

∣∣∣∣∣ ≤
∫ b

a
|g(x)| dx 3

E j =
∣∣∣∣∣
∫ x j

x j−1

(
f (x) − L(x)

)
dx

∣∣∣∣∣ ≤
∫ x j

x j−1

∣∣ f (x) − L(x)
∣∣ dx

Thus (2) follows from the next theorem.

THEOREM 2 Theorem Assume that f ′′(x) exists and is continuous. If | f ′′(x)| ≤ K2
for all x ∈ [x j−1, x j ], then∫ x j

x j−1

∣∣∣ f (x) − L(x)

∣∣∣ dx ≤ K2

24
(�x)3 4

Proof The linear function L(x) is the first Taylor polynomial for f (x) centered at x =
c j . According to the Error Bound for Taylor polynomials (LT Section 9.4, ET Section
8.4),

∣∣ f (x) − L(x)
∣∣ ≤ 1

2
K2(x − c j )

2

Therefore, ∫ x j

x j−1

∣∣ f (x) − L(x)
∣∣ dx ≤ 1

2
K2

∫ x j

x j−1

(x − c j )
2 dx 5

This last integral may be computed directly:∫ x j

x j−1

(x − c j )
2 dx = 1

3
(x − c j )

3
∣∣∣∣
x j

x j−1

= 1

3
(x j − c j )

3 − 1

3
(x j−1 − c j )

3

Note that

x j − c j = x j − 1

2
(x j−1 + x j ) = 1

2
(x j − x j ) = 1

2
�x

and similarly, x j−1 − c j = −1

2
�x . Therefore

∫ x j

x j−1

(x − c j )
2 dx = 1

3

(
�x

2

)3

− 1

3

(−�x

2

)3

= (�x)3

12
6

Using (6) in (5), we obtain the desired inequality:

∫ b

a

∣∣ f (x) − L(x)
∣∣ dx ≤ 1

2
K2

(
(�x)3

12

)
= K2(�x)3

24

Error Bound for the Trapezoidal Rule

The N th trapezoidal approximation TN is equal to the sum of the signed areas of the

(xj −1, f (xj −1))

(xj , f (xj))

x0 = a xN = bxj −1 xj

Δx

y = f (x)

FIGURE 3

trapezoid obtained by joining the points on the graph above the endpoints x0, x1, . . . ,
xN . The formula for TN is

TN = 1

2
�x ( f (x0) + 2 f (x1) + · · · + 2 f (xN−1) + f (xN ))
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THEOREM 3 Error Bound for TN Let K2 be a number such that | f ′′(x)| ≤ K2 for
all x ∈ [a, b]. Then

Error(TN ) ≤ K2(b − a)3

12N 2

As we observed above in the case of the Midpoint Rule, the total error Error(TN ) is

In Theorem 3, the error in TN is defined by

Error(TN ) =
∣∣∣∣∣
∫ b

a
f (x) dx − TN

∣∣∣∣∣

not greater than the sum of the errors over the subintervals [x j−1, x j ]. Again, we denote
the error over [x j−1, x j ] by E j . Then

Error(TN ) ≤
N∑

j=1

E j

We will prove that E j is at most K2(�x)3/12 for all j , where �x = (b − a)/N . In other
words,

E j ≤ K2

12
(�x)3 = K2

24

(
b − a

N

)3

= K2(b − a)3

12N 3
7

Since there are N subintervals, the total error is at most N times this quantity:

Error(TN ) ≤ N

(
K2(b − a)3

12N 3

)
= K2(b − a)3

12N 2

This is the bound stated in Theorem 1. Therefore, Theorem 3 follows if we prove (7).
To prove (7), note that the error E j is equal to the signed area between the secant line

and the graph over [x j−1, x j ] (Figure 4). Let S(x) be the linear function whose graph is
this secant line. For the record,

S(x) =
(

f (x j ) − f (x j−1)

x j − x j−1

)
x +

(
x j f (x j−1) − x j−1 f (x j )

x j − x j−1

)

However, this formula is not used in the proof. We then have

y = S(x)

y = f (x)

The area between the graph and the
secant line is at most K2(Δx)3/12

xj −1 xj

Δx

FIGURE 4 The error in the Trapezoidal
Rule over [x j−1, x j ] is equal to the area of
the blue region between the graph of f (x)

and the secant line.

E j =
∣∣∣∣∣
∫ x j

x j−1

(
f (x) − S(x)

)
dx

∣∣∣∣∣ ≤
∫ x j

x j−1

∣∣ f (x) − S(x)
∣∣ dx

The bound (7) follows from the next theorem.

THEOREM 4 Theorem Assume that f ′′(x) exists and is continuous. If | f ′′(x)| ≤ K2
for all [x j−1, x j ], ∫ x j

x j−1

∣∣ f (x) − S(x)
∣∣ dx ≤ K2(�x)3

12
8

A key tool in the proof of Theorem 4 is the following version of Rolle’s Theorem.
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LEMMA 5 Rolle’s Theorem for a Function With Three Zeroes Assume that G(x) is
continuous on [x j−1, x j ] and that G ′′(x) exists on (x j−1, x j ). Let t ∈ (x j−1, x j ) and
assume further that

G(x j−1) = G(x j ) = G(t) = 0

Then there exists c ∈ (x j−1, x j ) such that G ′′(c) = 0.

Proof Rolle’s Theorem (Theorem 4 in Section 4.2) states that if f (x) is a continuous

G"(c) = 0

y = G(x)

xj −1 xjr c t s
x

y

FIGURE 5 The function G(x) has three
zeroes at x = x j−1, t , and x j . According
to Theorem 5, there exists c ∈ (x j−1, x j )

such that G′′(c) = 0.

function on [x j−1, x j ] such that f ′(x) exists on (x j−1, x j ) and

f (x j−1) = f (x j ) = 0

then there exists c ∈ (x j−1, x j ) such that f ′(c) = 0. In other words, between any two
zeroes of f (x) there lies a zero of f ′(x). Applying Rolle’s Theorem to G(x) on the
interval [x j−1, t], we find that there exists r ∈ (x j−1, t) such that G ′(r) = 0. For the
same reason, there exists s ∈ (t, x j ) such that G ′(s) = 0. Now apply Rolle’s Theorem to
G ′(x) on the interval [r, s]. We conclude that there exists c ∈ (r, s) such that G ′′(c) = 0.

We now prove Theorem 4. Let

G(x) = f (x) − S(x) − q(x − x j−1)(x − x j )

where q is a constant. Given t ∈ (x j−1, x j ), we may choose q so that G(t) = 0. Indeed,
we need only solve for q in the equation

G(t) = f (t) − S(t) − q(t − x j−1)(t − x j ) = 0

The solution is

q = f (t) − S(t)

(t − x j−1)(t − x j )
9

Now observe that

G(x j−1) = f (x j−1) − S(x j−1) − q · 0 = 0 − 0 = 0

Similarly, G(x j ) = 0. Therefore, with our choice of q we find that G(x) has zeroes at
x = x j−1, x j and t . By Lemma 5, there exists c ∈ (x j−1, x j ) such that G ′′(c) = 0.

We claim that G ′′(x) = f ′′(c) − 2q. Indeed,

d2

dx2

(
(x − x j−1)(x − x j )

) = d2

dx2

(
x2 − (x j−1 + x j )x + x j−1x j

) = 2

On the other hand, S′′(x) = 0 since S(x) is linear, and thus

G ′′(c) = f ′′(c) − S′′(c) − q
d2

dx2

(
(x − x j−1)(x − x j )

) = f ′′(c) − 2q

Since G ′′(c) = 0, q = 1
2 f ′′(c), and since | f ′′(c)| ≤ K2, Eq. (9) gives us

|q| =
∣∣∣∣ f (t) − S(t)

(t − x j−1)(t − x j )

∣∣∣∣ = 1

2

∣∣ f ′′(c)
∣∣ ≤ 1

2
K2
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Multiplying both sides of this inequality by |(t − x j−1)(t − x j )|, we obtain:

∣∣ f (t) − S(t)
∣∣ ≤ 1

2
K2

∣∣(t − x j−1)(t − x j )
∣∣

This inequality is valid for all t ∈ (x j−1, x j ). Now write x in place of t in this inequality
and integrate:∫ x j

x j−1

∣∣ f (x) − S(x)
∣∣ dx ≤ 1

2
K2

∫ x j

x j−1

∣∣(x − x j−1)(x − x j )
∣∣ dx 10

To evaluate this last integral, note that (x − x j−1)(x − x j ) is negative for x ∈ (x j−1, x j )

(since the first factor positive and the second is negative on (x j−1, x j )). Therefore∫ x j

x j−1

∣∣(x − x j−1)(x − x j )
∣∣ dx = −

∫ x j

x j−1

(x − x j−1)(x − x j ) dx

Direct calculation (which we omit) shows that

−
∫ x j

x j−1

(x − x j−1)(x − x j ) dx = (x j − x j−1)
3

6
= (�x)3

6

Using this result in (10) we obtain the desired inequality (8):∫ x j

x j−1

∣∣ f (x) − S(x)
∣∣ dx ≤ 1

2
K2

(�x)3

6
= K2(�x)3

12


