#### Find what you need to succeed.

# Practice of Statistics in the Life Sciences

## Fourth Edition| ©2018 Brigitte Baldi; David S. Moore

Now available with Macmillan’s online learning platform** Achieve**, * The Practice of Statistics* in the Life Sciences gives biology students an introduction to statistical practice all their own. It covers essential statistical topics with examples and exerci...

Now available with Macmillan’s online learning platform** Achieve**, * The Practice of Statistics* in the Life Sciences gives biology students an introduction to statistical practice all their own. It covers essential statistical topics with examples and exercises drawn from across the life sciences, including the fields of nursing, public health, and allied health. Based on David Moore’s The Basic Practice of Statistics, PSLS mirrors that #1 bestseller’s signature emphasis on statistical thinking, real data, and what statisticians actually do.

**Achieve **for *The Practice of Statistics* in the Life Sciences connects the problem-solving approach and real world examples in the book to rich digital resources that foster further understanding and application of statistics. Assets in Achieve support learning before, during, and after class for students, while providing instructors with class performance analytics in an easy-to-use interface.

ISBN:9781319403348

Access all your course tools in one place!

ISBN:9781319067496

Take notes, add highlights, and download our mobile-friendly e-books.

ISBN:9781319013530

Save money with our hole-punched, loose-leaf textbook.

ISBN:9781319013370

Read and study old-school with our bound texts.

ISBN:9781319424114

This package includes Achieve and Hardcover.

ISBN:9781319424138

This package includes Achieve and Loose-Leaf.

*Practice of Statistics in the Life Sciences* effectively teaches essential statistical concepts and fosters an understanding for how the principles apply to analysis of data across life science fields.

Now available with Macmillan’s online learning platform** Achieve**, * The Practice of Statistics* in the Life Sciences gives biology students an introduction to statistical practice all their own. It covers essential statistical topics with examples and exercises drawn from across the life sciences, including the fields of nursing, public health, and allied health. Based on David Moore’s The Basic Practice of Statistics, PSLS mirrors that #1 bestseller’s signature emphasis on statistical thinking, real data, and what statisticians actually do.

**Achieve **for *The Practice of Statistics* in the Life Sciences connects the problem-solving approach and real world examples in the book to rich digital resources that foster further understanding and application of statistics. Assets in Achieve support learning before, during, and after class for students, while providing instructors with class performance analytics in an easy-to-use interface.

Features

**Achieve Online Homework**

**Over 3,000 homework questions**of varying difficulty, Bloom’s level, and question type. Every homework question includes a hint, answer-specific feedback, and a fully worked solution. Question types in Achieve include- Multiple choice
- Ranking
- Sorting
- Numeric entry
- Multi-part questions
- Questions with algorithmically regenerating values
**LearningCurve adaptive quizzing**puts the concept of "testing to learn" into action, motivating students to engage with the text's content to identify areas of proficiency. Easy-to-use reporting tools help teachers pinpoint areas to focus on in class.- A mobile,
**interactive e-book,**powered by VitalSource, allows students to highlight and take notes, print select pages, and have the text read aloud to them. - Over 140
**StatTutors**--multimedia tutorials that explore important concepts and procedures in a presentation that combines video, audio, and interactive features--are assignable, gradeable, and organized by chapter. **Applet Activities**are visual interactives that allow students to manipulate data and variables in calculations and see the results graphically. Applets also contain assessment questions to test students’ comprehension.**Videos**provide additional exposure to key concepts and examples. Videos are narrated and close-captioned. Video types include- Whiteboard-style problem-solving videos
- StatTutor video lessons
- Animated lectures and documentary-style videos that illustrate real world scenarios involving statistics
**EESEE**(Electronic Encyclopedia of Statistical Examples and Exercises) Case Studies, developed by the Ohio State University Statistics Department, teach students to apply their statistical skills by exploring actual case studies using real data.**Video Technology Manuals**are brief instructional videos that provide basic introductions for working with CrunchIt!, Excel, SPSS, TI-83/84 calculators, JMP, Minitab, R, and RCmdr.

**Statistical software options**

**CrunchIt!,**Macmillan’s proprietary online statistical software powered by R, handles every computation and graphing function an introductory statistics student needs. CrunchIt! is preloaded with data sets, and it allows editing and importing additional data.- Students also receive access to
**JMP**Student Edition (developed by SAS). With the student edition of JMP, students handle large data, visualizations, and analysis for which the professional version is renowned. Additionally, text-specific data sets are included for download. - For other statistical software, Achieve includes data sets, including those for
- Excel
- Minitab
- R & RCmdr
- SPSS
- TI Calculators
- Mac-text & PC-text
- CSV file export

New to This Edition

The changes for this edition align *The Practice of Statistics in the Life Sciences* with the revised 2016 GAISE report. (See Page 3 for Executive Summary).

New Data Sets

New and updated examples and exercises, approximately 30% throughout the text, ensure that the content remains timely and relevant—and real!

Contents changes and reorganization

*Based on the valuable feedback of instructors using *Practice of Statistics in the Life Sciences* as well as reviewers’ comments, the following changes more accurately reflect how data is analyzed in the life science.*

**Technology at the forefront.**Increase in emphasis on technology rather than tables of critical values (such tables will still be covered as an alternative for students without access to technology).**Greater focus on interpretation.**More exercises for interpreting software output and research and news reports appear throughout the text.**Shift from computation to interpretation with quantitative data.**Chapter 2 de-emphasizes hand-computations of summary statistics to focus more on concept and interpretation and less on step by step computations.**Change to treatment of stemplots.**Stemplots are no longer covered as a core graph (however, some end-of-chapter exercises to show students how to read and create simple stemplots).**Redesigned review chapters**. Review chapters now contain comprehensive exercises covering material from a set of chapters rather than simply providing more chapter-specific exercises.

Online technology appendices

New software basics technology appendices will include detailed instruction on how to perform relevant statistical tests for various software packages (available online) www.macmillanhighered.com/psls4e.

**
Practice of Statistics in the Life Sciences**

Fourth Edition| ©2018

Brigitte Baldi; David S. Moore

# Digital Options

## Achieve

Achieve is a comprehensive set of interconnected teaching and assessment tools that incorporate the most effective elements from Macmillan Learning's market leading solutions in a single, easy-to-use platform.

## E-book

Read online (or offline) with all the highlighting and notetaking tools you need to be successful in this course.

**Practice of Statistics in the Life Sciences**

Fourth Edition| 2018

Brigitte Baldi; David S. Moore

## Table of Contents

**Part I: Collecting and Exploring Data**

**Chapter 1 Picturing Distributions with Graphs**

Individuals and variables

Identifying categorical and quantitative variables

Categorical variables: pie charts and bar graphs

Quantitative variables: histograms

Interpreting histograms

Quantitative variables: dotplots

Time plots

Discussion: (Mis)adventures in data entry

Chapter 2 Describing Quantitative Distributions with Numbers

Measures of center: median, mean

Measures of spread: percentiles, standard deviation

Graphical displays of numerical summaries

Spotting suspected outliers*

Discussion: Dealing with outliers

Organizing a statistical problem

Chapter 3 Scatterplots and Correlation

Explanatory and response variables

Relationship between two quantitative variables: scatterplots

Adding categorical variables to scatterplots

Measuring linear association: correlation

Chapter 4 Regression

The least-squares regression line

Facts about least-squares regression

Outliers and influential observations

Working with logarithm transformations*

Cautions about correlation and regression

Association does not imply causation

Chapter 5 Two-Way Tables

Marginal distributions

Conditional distributions

Simpson's paradox

Chapter 6 Samples and Observational Studies

Observation versus experiment

Sampling

Sampling designs

Sample surveys

Cohorts and case-control studies

Chapter 7 Designing Experiments

Designing experiments

Randomized comparative experiments

Common experimental designs

Cautions about experimentation

Ethics in experimentation

Discussion: The Tuskegee syphilis study

Chapter 8 Collecting and Exploring Data: Part I Review

Part I Summary

Comprehensive Review Exercises

Large Dataset Exercises

Online Data Sources

EESEE Case Studies

Part II: From Chance to Inference

Chapter 9 Essential Probability Rules

The idea of probability

Probability models

Probability rules

Discrete versus continuous probability models

Random variables

Risk and odds*

Chapter 10 Independence and Conditional Probabilities*

Relationships among several events

Conditional probability

General probability rules

Tree diagrams

Bayes's theorem

Discussion: Making sense of conditional probabilities in diagnostic tests

Chapter 11 The Normal Distributions

Normal distributions

The 68-95-99.7 rule

The standard Normal distribution

Finding Normal probabilities

Finding percentiles

Using the standard Normal table*

Normal quantile plots*

Chapter 12 Discrete Probability Distributions*

The binomial setting and binomial distributions

Binomial probabilities

Binomial mean and standard deviation

The Normal approximation to binomial distributions

The Poisson distributions

Poisson probabilities

Chapter 13 Sampling Distributions

Parameters and statistics

Statistical estimation and sampling distributions

The sampling distribution of

The central limit theorem

The sampling distribution of

The law of large numbers*

Chapter 14 Introduction to Inference

Statistical estimation

Margin of error and confidence level

Confidence intervals for the mean

Hypothesis testing

*P*-value and statistical significance

Tests for a population mean

Tests from confidence intervals

Chapter 15 Inference in Practice

Conditions for inference in practice

How confidence intervals behave

How hypothesis tests behave

Discussion: The scientific approach

Planning studies: selecting an appropriate sample size

Chapter 16 From Chance to Inference: Part II Review

Part II Summary

Comprehensive Review Exercises

Advanced Topics (Optional Material)

Online Data Sources

EESEE Case Studies

Part III: Statistical Inference

Chapter 17 Inference about a Population Mean

Conditions for inference

The *t* distributions

The one-sample *t* confidence interval

The one-sample *t* test

Matched pairs *t* procedures

Robustness of *t* procedures

Chapter 18 Comparing Two Means

Comparing two population means

Two-sample *t* procedures

Robustness again

Avoid the pooled two-sample *t* procedures*

Avoid inference about standard deviations*

Chapter 19 Inference about a Population Proportion

The sample proportion

Large-sample confidence intervals for a proportion

Accurate confidence intervals for a proportion

Choosing the sample size*

Hypothesis tests for a proportion

Chapter 20 Comparing Two Proportions

Two-sample problems: proportions

The sampling distribution of a difference between proportions

Large-sample confidence intervals for comparing proportions

Accurate confidence intervals for comparing proportions

Hypothesis tests for comparing proportions

Relative risk and odds ratio*

Discussion: Assessing and understanding health risks

Chapter 21 The Chi-Square Test for Goodness of Fit

Hypotheses for goodness of fit

The chi-square test for goodness of fit

Interpreting chi-square results

Conditions for the chi-square test

The chi-square distributions

The chi-square test and the one-sample *z* test*

Chapter 22 The Chi-Square Test for Two-Way Tables

Two-way tables

The problem of multiple comparisons

Expected counts in two-way tables

The chi-square test

Conditions for the chi-square test

Uses of the chi-square test

Using a table of critical values*

The chi-square test and the two-sample *z* test*

Chapter 23 Inference for Regression

Conditions for regression inference

Estimating the parameters

Testing the hypothesis of no linear relationship

Testing lack of correlation*

Confidence intervals for the regression slope

Inference about prediction

Checking the conditions for inference

Chapter 24 One-Way Analysis of Variance: Comparing Several Means

Comparing several means

The analysis of variance *F* test

The idea of analysis of variance

Conditions for ANOVA

*F* distributions and degrees of freedom

The one-way ANOVA and the pooled two-sample *t* test*

Details of ANOVA calculations*

Chapter 25 Statistical Inference: Part III Review

Part III Summary

Review Exercises

Supplementary Exercises

EESEE Case Studies

Part IV: Optional Companion Chapters

Chapter 26 More about Analysis of Variance: Follow-up Tests and Two-Way ANOVA

Beyond one-way ANOVA

Follow up analysis: Tukey’s pairwise multiple comparisons

Follow up analysis: contrasts*

Two-way ANOVA: conditions, main effects, and interaction

Inference for two-way ANOVA

Some details of two-way ANOVA*

Chapter 27 Nonparametric Tests

Comparing two samples: the Wilcoxon rank sum test

Matched pairs: the Wilcoxon signed rank test

Comparing several samples: the Kruskal-Wallis test

Chapter 28 Multiple and Logistic Regression

Parallel regression lines

Estimating parameters

Conditions for inference

Inference for multiple regression

Interaction

A case study for multiple regression

Logistic regression

Inference for logistic regression

Notes and Data Sources

Tables

Answers to Selected Exercises

Some Data Sets Recurring Across Chapters

Index

**Practice of Statistics in the Life Sciences**

Fourth Edition| 2018

Brigitte Baldi; David S. Moore

## Authors

### Brigitte Baldi

**Brigitte Baldi**is a graduate of France’s Ecole Normale Supérieure in Paris. In her academic studies, she combined a love of math and quantitative analysis with wide interests in the life sciences. She studied math and biology in a double major and obtained a Masters in molecular biology and biochemistry and a Masters in cognitive sciences. She earned her Ph.D. in neuroscience from the Université Paris VI studying multisensory integration in the brain and used computer simulations to study patterns of brain reorganization after lesion as a post-doctoral fellow at the California Institute of Technology. She then worked as a management consultant advising corporations before returning to academia to teach statistics. Dr. Baldi is currently a lecturer in the Department of Statistics at the University of California, Irvine. She is actively involved in statistical education. She was a local and later national advisor in the development of the statistics telecourse Statistically Speaking, replacing David Moore’s earlier telecourse Against All Odds. She developed UCI’s first online statistics courses and is interested in ways to integrate new technologies in the classroom to enhance participation and learning. She is currently serving as an elected member to the Executive Committee At Large of the section on Statistical Education of the American Statistical Association.

### David S. Moore

**David S. Moore** is Shanti S. Gupta Distinguished Professor of Statistics, Emeritus, at Purdue University and was 1998 president of the American Statistical Association. He received his AB from Princeton and his PhD from Cornell, both in mathematics. He has written many research papers in statistical theory and served on the editorial boards of several major journals. Professor Moore is an elected fellow of the American Statistical Association and of the Institute of Mathematical Statistics and an elected member of the International Statistical Institute. He has served as program director for statistics and probability at the National Science Foundation.

In recent years, Professor Moore has devoted his attention to the teaching of statistics. He was the content developer for the Annenberg/Corporation for Public Broadcasting college-level telecourse Against All Odds: Inside Statistics and for the series of video modules Statistics: Decisions through Data, intended to aid the teaching of statistics in schools. He is the author of influential articles on statistics education and of several leading texts. Professor Moore has served as president of the International Association for Statistical Education and has received the Mathematical Association of America’s national award for distinguished college or university teaching of mathematics.

**Practice of Statistics in the Life Sciences**

Fourth Edition| 2018

Brigitte Baldi; David S. Moore

# Instructor Resources

## Need instructor resources for your course?

Unlock Your Resources# Instructor Resources

### Access Test Bank

You need to sign in as a verified instructor to access the Test Bank.

### Test Bank for Practice of Statistics in the Life Sciences (Online Only)

Brigitte Baldi; David S. Moore | Fourth Edition | ©2018 | ISBN:9781319150341

### Download Resources

You need to sign in to unlock your resources.

### Request Access to CrunchIt!

**We're sorry!**The server encountered an internal error and cannot complete your request. Please try again later.

You've selected:

Click the E-mail Download Link button and we'll send you an e-mail at with links to download your instructor resources. Please note there may be a delay in delivering your e-mail depending on the size of the files.

**Warning!** These materials are owned by Macmillan Learning or its licensors and are protected by copyright laws in the United States and other jurisdictions. Such materials may include a digital watermark that is linked to your name and email address in your Macmillan Learning account to identify the source of any materials used in an unauthorised way and prevent online piracy. These materials are being provided solely for instructional use by instructors who have adopted Macmillan Learning’s accompanying textbooks or online products for use by students in their courses. These materials may not be copied, distributed, sold, shared, posted online, or used, in print or electronic format, except in the limited circumstances set forth in the Macmillan Learning Terms of Use
and any other reproduction or distribution is illegal. These materials may not be made publicly available under any circumstances. All other rights reserved. For more information about the use of your personal data including for the purposes of anti-piracy enforcement, please refer to Macmillan Learning's.Privacy Notice

### Thank you!

Your download request has been received and your download link will be sent to .

Please note you could wait up to **30 to 60 minutes** to receive your download e-mail depending on the number and size of the files. We appreciate your patience while we process your request.

Check your inbox, trash, and spam folders for an e-mail from **InstructorResources@macmillan.com**.

If you do not receive your e-mail, please visit macmillanlearning.com/support.

**We're sorry!**The server encountered an internal error and cannot complete your request. Please try again later.

**Practice of Statistics in the Life Sciences**

Fourth Edition| 2018

Brigitte Baldi; David S. Moore

## Related Titles

Select a demo to view:

These materials are owned by Macmillan Learning or its licensors and are protected by United States copyright law. They are being provided solely for evaluation purposes only by instructors who are considering adopting Macmillan Learning's textbooks or online products for use by students in their courses. These materials may not be copied, distributed, sold, shared, posted online, or used, in print or electronic format, except in the limited circumstances set forth in the Macmillan Learning Terms of Use and any other reproduction or distribution is illegal. These materials may not be made publicly available under any circumstances. All other rights reserved. © 2020 Macmillan Learning.

BY CLICKING ON THE SAMPLE CHAPTER LINK BELOW, YOU ARE AGREEING TO USE THESE MATERIALS ONLY IN ACCORDANCE WITH MACMILLAN LEARNING'S TERMS OF USE.

**Select a file to view:**